Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|
2 |
|
qsdrng.q |
|
3 |
|
qsdrng.r |
|
4 |
|
qsdrng.2 |
|
5 |
|
qsdrnglem2.1 |
|
6 |
|
qsdrnglem2.q |
|
7 |
|
qsdrnglem2.j |
|
8 |
|
qsdrnglem2.m |
|
9 |
|
qsdrnglem2.x |
|
10 |
|
nzrring |
|
11 |
3 10
|
syl |
|
12 |
11
|
ad2antrr |
|
13 |
7
|
ad2antrr |
|
14 |
12
|
ringgrpd |
|
15 |
|
eqid |
|
16 |
5 15
|
lidlss |
|
17 |
13 16
|
syl |
|
18 |
|
simplr |
|
19 |
9
|
eldifad |
|
20 |
19
|
ad2antrr |
|
21 |
|
eqid |
|
22 |
15 5 21
|
lidlmcl |
|
23 |
12 13 18 20 22
|
syl22anc |
|
24 |
17 23
|
sseldd |
|
25 |
|
eqid |
|
26 |
5 25
|
ringidcl |
|
27 |
12 26
|
syl |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
5 28 29
|
grpasscan1 |
|
31 |
14 24 27 30
|
syl3anc |
|
32 |
8
|
ad2antrr |
|
33 |
7 16
|
syl |
|
34 |
8 33
|
sstrd |
|
35 |
34
|
ad2antrr |
|
36 |
|
simpr |
|
37 |
36
|
oveq1d |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
6
|
ad2antrr |
|
44 |
33 19
|
sseldd |
|
45 |
|
ovex |
|
46 |
45
|
ecelqsi |
|
47 |
44 46
|
syl |
|
48 |
2
|
a1i |
|
49 |
5
|
a1i |
|
50 |
45
|
a1i |
|
51 |
48 49 50 3
|
qusbas |
|
52 |
47 51
|
eleqtrd |
|
53 |
52
|
ad2antrr |
|
54 |
4
|
2idllidld |
|
55 |
15
|
lidlsubg |
|
56 |
11 54 55
|
syl2anc |
|
57 |
|
eqid |
|
58 |
5 57
|
eqger |
|
59 |
56 58
|
syl |
|
60 |
|
ecref |
|
61 |
59 44 60
|
syl2anc |
|
62 |
9
|
eldifbd |
|
63 |
|
nelne1 |
|
64 |
61 62 63
|
syl2anc |
|
65 |
|
lidlnsg |
|
66 |
11 54 65
|
syl2anc |
|
67 |
2
|
qus0g |
|
68 |
66 67
|
syl |
|
69 |
64 68
|
neeqtrrd |
|
70 |
69
|
ad2antrr |
|
71 |
38 39 40 41 42 43 53 70
|
drnginvrld |
|
72 |
4
|
ad2antrr |
|
73 |
44
|
ad2antrr |
|
74 |
2 5 21 40 12 72 18 73
|
qusmul2 |
|
75 |
37 71 74
|
3eqtr3rd |
|
76 |
|
eqid |
|
77 |
2 76 25
|
qus1 |
|
78 |
77
|
simprd |
|
79 |
12 72 78
|
syl2anc |
|
80 |
75 79
|
eqtr4d |
|
81 |
56
|
ad2antrr |
|
82 |
81 58
|
syl |
|
83 |
82 27
|
erth2 |
|
84 |
80 83
|
mpbird |
|
85 |
5 29 28 57
|
eqgval |
|
86 |
85
|
biimpa |
|
87 |
86
|
simp3d |
|
88 |
12 35 84 87
|
syl21anc |
|
89 |
32 88
|
sseldd |
|
90 |
15 28
|
lidlacl |
|
91 |
12 13 23 89 90
|
syl22anc |
|
92 |
31 91
|
eqeltrrd |
|
93 |
15 5 25
|
lidl1el |
|
94 |
93
|
biimpa |
|
95 |
12 13 92 94
|
syl21anc |
|
96 |
38 39 42 6 52 69
|
drnginvrcld |
|
97 |
96 51
|
eleqtrrd |
|
98 |
|
elqsi |
|
99 |
97 98
|
syl |
|
100 |
95 99
|
r19.29a |
|