Metamath Proof Explorer


Theorem qsdrnglem2

Description: Lemma for qsdrng . (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O = opp r R
qsdrng.q Q = R / 𝑠 R ~ QG M
qsdrng.r φ R NzRing
qsdrng.2 φ M 2Ideal R
qsdrnglem2.1 B = Base R
qsdrnglem2.q φ Q DivRing
qsdrnglem2.j φ J LIdeal R
qsdrnglem2.m φ M J
qsdrnglem2.x φ X J M
Assertion qsdrnglem2 φ J = B

Proof

Step Hyp Ref Expression
1 qsdrng.0 O = opp r R
2 qsdrng.q Q = R / 𝑠 R ~ QG M
3 qsdrng.r φ R NzRing
4 qsdrng.2 φ M 2Ideal R
5 qsdrnglem2.1 B = Base R
6 qsdrnglem2.q φ Q DivRing
7 qsdrnglem2.j φ J LIdeal R
8 qsdrnglem2.m φ M J
9 qsdrnglem2.x φ X J M
10 nzrring R NzRing R Ring
11 3 10 syl φ R Ring
12 11 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M R Ring
13 7 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M J LIdeal R
14 12 ringgrpd φ s B inv r Q X R ~ QG M = s R ~ QG M R Grp
15 eqid LIdeal R = LIdeal R
16 5 15 lidlss J LIdeal R J B
17 13 16 syl φ s B inv r Q X R ~ QG M = s R ~ QG M J B
18 simplr φ s B inv r Q X R ~ QG M = s R ~ QG M s B
19 9 eldifad φ X J
20 19 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M X J
21 eqid R = R
22 15 5 21 lidlmcl R Ring J LIdeal R s B X J s R X J
23 12 13 18 20 22 syl22anc φ s B inv r Q X R ~ QG M = s R ~ QG M s R X J
24 17 23 sseldd φ s B inv r Q X R ~ QG M = s R ~ QG M s R X B
25 eqid 1 R = 1 R
26 5 25 ringidcl R Ring 1 R B
27 12 26 syl φ s B inv r Q X R ~ QG M = s R ~ QG M 1 R B
28 eqid + R = + R
29 eqid inv g R = inv g R
30 5 28 29 grpasscan1 R Grp s R X B 1 R B s R X + R inv g R s R X + R 1 R = 1 R
31 14 24 27 30 syl3anc φ s B inv r Q X R ~ QG M = s R ~ QG M s R X + R inv g R s R X + R 1 R = 1 R
32 8 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M M J
33 7 16 syl φ J B
34 8 33 sstrd φ M B
35 34 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M M B
36 simpr φ s B inv r Q X R ~ QG M = s R ~ QG M inv r Q X R ~ QG M = s R ~ QG M
37 36 oveq1d φ s B inv r Q X R ~ QG M = s R ~ QG M inv r Q X R ~ QG M Q X R ~ QG M = s R ~ QG M Q X R ~ QG M
38 eqid Base Q = Base Q
39 eqid 0 Q = 0 Q
40 eqid Q = Q
41 eqid 1 Q = 1 Q
42 eqid inv r Q = inv r Q
43 6 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M Q DivRing
44 33 19 sseldd φ X B
45 ovex R ~ QG M V
46 45 ecelqsi X B X R ~ QG M B / R ~ QG M
47 44 46 syl φ X R ~ QG M B / R ~ QG M
48 2 a1i φ Q = R / 𝑠 R ~ QG M
49 5 a1i φ B = Base R
50 45 a1i φ R ~ QG M V
51 48 49 50 3 qusbas φ B / R ~ QG M = Base Q
52 47 51 eleqtrd φ X R ~ QG M Base Q
53 52 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M X R ~ QG M Base Q
54 4 2idllidld φ M LIdeal R
55 15 lidlsubg R Ring M LIdeal R M SubGrp R
56 11 54 55 syl2anc φ M SubGrp R
57 eqid R ~ QG M = R ~ QG M
58 5 57 eqger M SubGrp R R ~ QG M Er B
59 56 58 syl φ R ~ QG M Er B
60 ecref R ~ QG M Er B X B X X R ~ QG M
61 59 44 60 syl2anc φ X X R ~ QG M
62 9 eldifbd φ ¬ X M
63 nelne1 X X R ~ QG M ¬ X M X R ~ QG M M
64 61 62 63 syl2anc φ X R ~ QG M M
65 lidlnsg R Ring M LIdeal R M NrmSGrp R
66 11 54 65 syl2anc φ M NrmSGrp R
67 2 qus0g M NrmSGrp R 0 Q = M
68 66 67 syl φ 0 Q = M
69 64 68 neeqtrrd φ X R ~ QG M 0 Q
70 69 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M X R ~ QG M 0 Q
71 38 39 40 41 42 43 53 70 drnginvrld φ s B inv r Q X R ~ QG M = s R ~ QG M inv r Q X R ~ QG M Q X R ~ QG M = 1 Q
72 4 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M M 2Ideal R
73 44 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M X B
74 2 5 21 40 12 72 18 73 qusmul2 φ s B inv r Q X R ~ QG M = s R ~ QG M s R ~ QG M Q X R ~ QG M = s R X R ~ QG M
75 37 71 74 3eqtr3rd φ s B inv r Q X R ~ QG M = s R ~ QG M s R X R ~ QG M = 1 Q
76 eqid 2Ideal R = 2Ideal R
77 2 76 25 qus1 R Ring M 2Ideal R Q Ring 1 R R ~ QG M = 1 Q
78 77 simprd R Ring M 2Ideal R 1 R R ~ QG M = 1 Q
79 12 72 78 syl2anc φ s B inv r Q X R ~ QG M = s R ~ QG M 1 R R ~ QG M = 1 Q
80 75 79 eqtr4d φ s B inv r Q X R ~ QG M = s R ~ QG M s R X R ~ QG M = 1 R R ~ QG M
81 56 ad2antrr φ s B inv r Q X R ~ QG M = s R ~ QG M M SubGrp R
82 81 58 syl φ s B inv r Q X R ~ QG M = s R ~ QG M R ~ QG M Er B
83 82 27 erth2 φ s B inv r Q X R ~ QG M = s R ~ QG M s R X R ~ QG M 1 R s R X R ~ QG M = 1 R R ~ QG M
84 80 83 mpbird φ s B inv r Q X R ~ QG M = s R ~ QG M s R X R ~ QG M 1 R
85 5 29 28 57 eqgval R Ring M B s R X R ~ QG M 1 R s R X B 1 R B inv g R s R X + R 1 R M
86 85 biimpa R Ring M B s R X R ~ QG M 1 R s R X B 1 R B inv g R s R X + R 1 R M
87 86 simp3d R Ring M B s R X R ~ QG M 1 R inv g R s R X + R 1 R M
88 12 35 84 87 syl21anc φ s B inv r Q X R ~ QG M = s R ~ QG M inv g R s R X + R 1 R M
89 32 88 sseldd φ s B inv r Q X R ~ QG M = s R ~ QG M inv g R s R X + R 1 R J
90 15 28 lidlacl R Ring J LIdeal R s R X J inv g R s R X + R 1 R J s R X + R inv g R s R X + R 1 R J
91 12 13 23 89 90 syl22anc φ s B inv r Q X R ~ QG M = s R ~ QG M s R X + R inv g R s R X + R 1 R J
92 31 91 eqeltrrd φ s B inv r Q X R ~ QG M = s R ~ QG M 1 R J
93 15 5 25 lidl1el R Ring J LIdeal R 1 R J J = B
94 93 biimpa R Ring J LIdeal R 1 R J J = B
95 12 13 92 94 syl21anc φ s B inv r Q X R ~ QG M = s R ~ QG M J = B
96 38 39 42 6 52 69 drnginvrcld φ inv r Q X R ~ QG M Base Q
97 96 51 eleqtrrd φ inv r Q X R ~ QG M B / R ~ QG M
98 elqsi inv r Q X R ~ QG M B / R ~ QG M s B inv r Q X R ~ QG M = s R ~ QG M
99 97 98 syl φ s B inv r Q X R ~ QG M = s R ~ QG M
100 95 99 r19.29a φ J = B