Metamath Proof Explorer


Theorem qseq1

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq1 A = B A / C = B / C

Proof

Step Hyp Ref Expression
1 rexeq A = B x A y = x C x B y = x C
2 1 abbidv A = B y | x A y = x C = y | x B y = x C
3 df-qs A / C = y | x A y = x C
4 df-qs B / C = y | x B y = x C
5 2 3 4 3eqtr4g A = B A / C = B / C