Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
qseq1
Next ⟩
qseq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
qseq1
Description:
Equality theorem for quotient set.
(Contributed by
NM
, 23-Jul-1995)
Ref
Expression
Assertion
qseq1
⊢
A
=
B
→
A
/
C
=
B
/
C
Proof
Step
Hyp
Ref
Expression
1
rexeq
⊢
A
=
B
→
∃
x
∈
A
y
=
x
C
↔
∃
x
∈
B
y
=
x
C
2
1
abbidv
⊢
A
=
B
→
y
|
∃
x
∈
A
y
=
x
C
=
y
|
∃
x
∈
B
y
=
x
C
3
df-qs
⊢
A
/
C
=
y
|
∃
x
∈
A
y
=
x
C
4
df-qs
⊢
B
/
C
=
y
|
∃
x
∈
B
y
=
x
C
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
/
C
=
B
/
C