Metamath Proof Explorer


Theorem qseq2

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq2 A = B C / A = C / B

Proof

Step Hyp Ref Expression
1 eceq2 A = B x A = x B
2 1 eqeq2d A = B y = x A y = x B
3 2 rexbidv A = B x C y = x A x C y = x B
4 3 abbidv A = B y | x C y = x A = y | x C y = x B
5 df-qs C / A = y | x C y = x A
6 df-qs C / B = y | x C y = x B
7 4 5 6 3eqtr4g A = B C / A = C / B