Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
qseq2
Next ⟩
qseq2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
qseq2
Description:
Equality theorem for quotient set.
(Contributed by
NM
, 23-Jul-1995)
Ref
Expression
Assertion
qseq2
⊢
A
=
B
→
C
/
A
=
C
/
B
Proof
Step
Hyp
Ref
Expression
1
eceq2
⊢
A
=
B
→
x
A
=
x
B
2
1
eqeq2d
⊢
A
=
B
→
y
=
x
A
↔
y
=
x
B
3
2
rexbidv
⊢
A
=
B
→
∃
x
∈
C
y
=
x
A
↔
∃
x
∈
C
y
=
x
B
4
3
abbidv
⊢
A
=
B
→
y
|
∃
x
∈
C
y
=
x
A
=
y
|
∃
x
∈
C
y
=
x
B
5
df-qs
⊢
C
/
A
=
y
|
∃
x
∈
C
y
=
x
A
6
df-qs
⊢
C
/
B
=
y
|
∃
x
∈
C
y
=
x
B
7
4
5
6
3eqtr4g
⊢
A
=
B
→
C
/
A
=
C
/
B