Metamath Proof Explorer


Theorem qsex

Description: A quotient set exists. (Contributed by NM, 14-Aug-1995)

Ref Expression
Hypothesis qsex.1 A V
Assertion qsex A / R V

Proof

Step Hyp Ref Expression
1 qsex.1 A V
2 qsexg A V A / R V
3 1 2 ax-mp A / R V