Metamath Proof Explorer


Theorem qshash

Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses qshash.1 φ ˙ Er A
qshash.2 φ A Fin
Assertion qshash φ A = x A / ˙ x

Proof

Step Hyp Ref Expression
1 qshash.1 φ ˙ Er A
2 qshash.2 φ A Fin
3 erex ˙ Er A A Fin ˙ V
4 1 2 3 sylc φ ˙ V
5 1 4 uniqs2 φ A / ˙ = A
6 5 fveq2d φ A / ˙ = A
7 pwfi A Fin 𝒫 A Fin
8 2 7 sylib φ 𝒫 A Fin
9 1 qsss φ A / ˙ 𝒫 A
10 8 9 ssfid φ A / ˙ Fin
11 elpwi x 𝒫 A x A
12 ssfi A Fin x A x Fin
13 12 ex A Fin x A x Fin
14 2 11 13 syl2im φ x 𝒫 A x Fin
15 14 ssrdv φ 𝒫 A Fin
16 9 15 sstrd φ A / ˙ Fin
17 qsdisj2 ˙ Er A Disj x A / ˙ x
18 1 17 syl φ Disj x A / ˙ x
19 10 16 18 hashuni φ A / ˙ = x A / ˙ x
20 6 19 eqtr3d φ A = x A / ˙ x