Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qsid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ||
2 | 1 | ecid | |
3 | 2 | eqeq2i | |
4 | equcom | ||
5 | 3 4 | bitri | |
6 | 5 | rexbii | |
7 | vex | ||
8 | 7 | elqs | |
9 | risset | ||
10 | 6 8 9 | 3bitr4i | |
11 | 10 | eqriv |