Metamath Proof Explorer


Theorem qsinxp

Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Assertion qsinxp R A A A / R = A / R A × A

Proof

Step Hyp Ref Expression
1 ecinxp R A A x A x R = x R A × A
2 1 eqeq2d R A A x A y = x R y = x R A × A
3 2 rexbidva R A A x A y = x R x A y = x R A × A
4 3 abbidv R A A y | x A y = x R = y | x A y = x R A × A
5 df-qs A / R = y | x A y = x R
6 df-qs A / R A × A = y | x A y = x R A × A
7 4 5 6 3eqtr4g R A A A / R = A / R A × A