Metamath Proof Explorer


Theorem qsnzr

Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses qsnzr.q Q = R / 𝑠 R ~ QG I
qsnzr.1 B = Base R
qsnzr.r φ R Ring
qsnzr.z φ R NzRing
qsnzr.i φ I 2Ideal R
qsnzr.2 φ I B
Assertion qsnzr φ Q NzRing

Proof

Step Hyp Ref Expression
1 qsnzr.q Q = R / 𝑠 R ~ QG I
2 qsnzr.1 B = Base R
3 qsnzr.r φ R Ring
4 qsnzr.z φ R NzRing
5 qsnzr.i φ I 2Ideal R
6 qsnzr.2 φ I B
7 eqid 2Ideal R = 2Ideal R
8 1 7 qusring R Ring I 2Ideal R Q Ring
9 3 5 8 syl2anc φ Q Ring
10 ringgrp R Ring R Grp
11 eqid 0 R = 0 R
12 eqid inv g R = inv g R
13 11 12 grpinvid R Grp inv g R 0 R = 0 R
14 3 10 13 3syl φ inv g R 0 R = 0 R
15 14 oveq1d φ inv g R 0 R + R 1 R = 0 R + R 1 R
16 eqid + R = + R
17 3 10 syl φ R Grp
18 eqid 1 R = 1 R
19 2 18 ringidcl R Ring 1 R B
20 3 19 syl φ 1 R B
21 2 16 11 17 20 grplidd φ 0 R + R 1 R = 1 R
22 15 21 eqtrd φ inv g R 0 R + R 1 R = 1 R
23 5 2idllidld φ I LIdeal R
24 2 18 pridln1 R Ring I LIdeal R I B ¬ 1 R I
25 3 23 6 24 syl3anc φ ¬ 1 R I
26 22 25 eqneltrd φ ¬ inv g R 0 R + R 1 R I
27 3 adantr φ 1 R R ~ QG I 0 R R Ring
28 lidlnsg R Ring I LIdeal R I NrmSGrp R
29 3 23 28 syl2anc φ I NrmSGrp R
30 nsgsubg I NrmSGrp R I SubGrp R
31 29 30 syl φ I SubGrp R
32 2 subgss I SubGrp R I B
33 31 32 syl φ I B
34 33 adantr φ 1 R R ~ QG I 0 R I B
35 eqid R ~ QG I = R ~ QG I
36 2 35 eqger I SubGrp R R ~ QG I Er B
37 31 36 syl φ R ~ QG I Er B
38 37 adantr φ 1 R R ~ QG I 0 R R ~ QG I Er B
39 simpr φ 1 R R ~ QG I 0 R 1 R R ~ QG I 0 R
40 38 39 ersym φ 1 R R ~ QG I 0 R 0 R R ~ QG I 1 R
41 2 12 16 35 eqgval R Ring I B 0 R R ~ QG I 1 R 0 R B 1 R B inv g R 0 R + R 1 R I
42 41 biimpa R Ring I B 0 R R ~ QG I 1 R 0 R B 1 R B inv g R 0 R + R 1 R I
43 42 simp3d R Ring I B 0 R R ~ QG I 1 R inv g R 0 R + R 1 R I
44 27 34 40 43 syl21anc φ 1 R R ~ QG I 0 R inv g R 0 R + R 1 R I
45 26 44 mtand φ ¬ 1 R R ~ QG I 0 R
46 37 20 erth φ 1 R R ~ QG I 0 R 1 R R ~ QG I = 0 R R ~ QG I
47 45 46 mtbid φ ¬ 1 R R ~ QG I = 0 R R ~ QG I
48 47 neqned φ 1 R R ~ QG I 0 R R ~ QG I
49 1 7 18 qus1 R Ring I 2Ideal R Q Ring 1 R R ~ QG I = 1 Q
50 3 5 49 syl2anc φ Q Ring 1 R R ~ QG I = 1 Q
51 50 simprd φ 1 R R ~ QG I = 1 Q
52 1 11 qus0 I NrmSGrp R 0 R R ~ QG I = 0 Q
53 29 52 syl φ 0 R R ~ QG I = 0 Q
54 48 51 53 3netr3d φ 1 Q 0 Q
55 eqid 1 Q = 1 Q
56 eqid 0 Q = 0 Q
57 55 56 isnzr Q NzRing Q Ring 1 Q 0 Q
58 9 54 57 sylanbrc φ Q NzRing