Step |
Hyp |
Ref |
Expression |
1 |
|
qsnzr.q |
|
2 |
|
qsnzr.1 |
|
3 |
|
qsnzr.r |
|
4 |
|
qsnzr.z |
|
5 |
|
qsnzr.i |
|
6 |
|
qsnzr.2 |
|
7 |
|
eqid |
|
8 |
1 7
|
qusring |
|
9 |
3 5 8
|
syl2anc |
|
10 |
|
ringgrp |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 12
|
grpinvid |
|
14 |
3 10 13
|
3syl |
|
15 |
14
|
oveq1d |
|
16 |
|
eqid |
|
17 |
3 10
|
syl |
|
18 |
|
eqid |
|
19 |
2 18
|
ringidcl |
|
20 |
3 19
|
syl |
|
21 |
2 16 11 17 20
|
grplidd |
|
22 |
15 21
|
eqtrd |
|
23 |
5
|
2idllidld |
|
24 |
2 18
|
pridln1 |
|
25 |
3 23 6 24
|
syl3anc |
|
26 |
22 25
|
eqneltrd |
|
27 |
3
|
adantr |
|
28 |
|
lidlnsg |
|
29 |
3 23 28
|
syl2anc |
|
30 |
|
nsgsubg |
|
31 |
29 30
|
syl |
|
32 |
2
|
subgss |
|
33 |
31 32
|
syl |
|
34 |
33
|
adantr |
|
35 |
|
eqid |
|
36 |
2 35
|
eqger |
|
37 |
31 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
|
simpr |
|
40 |
38 39
|
ersym |
|
41 |
2 12 16 35
|
eqgval |
|
42 |
41
|
biimpa |
|
43 |
42
|
simp3d |
|
44 |
27 34 40 43
|
syl21anc |
|
45 |
26 44
|
mtand |
|
46 |
37 20
|
erth |
|
47 |
45 46
|
mtbid |
|
48 |
47
|
neqned |
|
49 |
1 7 18
|
qus1 |
|
50 |
3 5 49
|
syl2anc |
|
51 |
50
|
simprd |
|
52 |
1 11
|
qus0 |
|
53 |
29 52
|
syl |
|
54 |
48 51 53
|
3netr3d |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
55 56
|
isnzr |
|
58 |
9 54 57
|
sylanbrc |
|