Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
qsqcl
Next ⟩
sq11
Metamath Proof Explorer
Ascii
Unicode
Theorem
qsqcl
Description:
The square of a rational is rational.
(Contributed by
Stefan O'Rear
, 15-Sep-2014)
Ref
Expression
Assertion
qsqcl
⊢
A
∈
ℚ
→
A
2
∈
ℚ
Proof
Step
Hyp
Ref
Expression
1
qcn
⊢
A
∈
ℚ
→
A
∈
ℂ
2
sqval
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A
3
1
2
syl
⊢
A
∈
ℚ
→
A
2
=
A
⁢
A
4
qmulcl
⊢
A
∈
ℚ
∧
A
∈
ℚ
→
A
⁢
A
∈
ℚ
5
4
anidms
⊢
A
∈
ℚ
→
A
⁢
A
∈
ℚ
6
3
5
eqeltrd
⊢
A
∈
ℚ
→
A
2
∈
ℚ