Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsqueeze | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |
|
| 2 | ltnle | |
|
| 3 | 1 2 | mpan | |
| 4 | qbtwnre | |
|
| 5 | 1 4 | mp3an1 | |
| 6 | 5 | ex | |
| 7 | qre | |
|
| 8 | ltnsym | |
|
| 9 | 8 | con2d | |
| 10 | 7 9 | sylan2 | |
| 11 | 10 | anim2d | |
| 12 | 11 | reximdva | |
| 13 | 6 12 | syld | |
| 14 | 3 13 | sylbird | |
| 15 | rexanali | |
|
| 16 | 14 15 | imbitrdi | |
| 17 | 16 | con4d | |
| 18 | 17 | imp | |
| 19 | 18 | 3adant2 | |
| 20 | letri3 | |
|
| 21 | 1 20 | mpan2 | |
| 22 | 21 | rbaibd | |
| 23 | 22 | 3adant3 | |
| 24 | 19 23 | mpbird | |