Metamath Proof Explorer


Theorem qsqueeze

Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion qsqueeze A 0 A x 0 < x A < x A = 0

Proof

Step Hyp Ref Expression
1 0re 0
2 ltnle 0 A 0 < A ¬ A 0
3 1 2 mpan A 0 < A ¬ A 0
4 qbtwnre 0 A 0 < A x 0 < x x < A
5 1 4 mp3an1 A 0 < A x 0 < x x < A
6 5 ex A 0 < A x 0 < x x < A
7 qre x x
8 ltnsym A x A < x ¬ x < A
9 8 con2d A x x < A ¬ A < x
10 7 9 sylan2 A x x < A ¬ A < x
11 10 anim2d A x 0 < x x < A 0 < x ¬ A < x
12 11 reximdva A x 0 < x x < A x 0 < x ¬ A < x
13 6 12 syld A 0 < A x 0 < x ¬ A < x
14 3 13 sylbird A ¬ A 0 x 0 < x ¬ A < x
15 rexanali x 0 < x ¬ A < x ¬ x 0 < x A < x
16 14 15 syl6ib A ¬ A 0 ¬ x 0 < x A < x
17 16 con4d A x 0 < x A < x A 0
18 17 imp A x 0 < x A < x A 0
19 18 3adant2 A 0 A x 0 < x A < x A 0
20 letri3 A 0 A = 0 A 0 0 A
21 1 20 mpan2 A A = 0 A 0 0 A
22 21 rbaibd A 0 A A = 0 A 0
23 22 3adant3 A 0 A x 0 < x A < x A = 0 A 0
24 19 23 mpbird A 0 A x 0 < x A < x A = 0