Metamath Proof Explorer


Theorem qsss

Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis qsss.1 φ R Er A
Assertion qsss φ A / R 𝒫 A

Proof

Step Hyp Ref Expression
1 qsss.1 φ R Er A
2 vex x V
3 2 elqs x A / R y A x = y R
4 1 ecss φ y R A
5 sseq1 x = y R x A y R A
6 4 5 syl5ibrcom φ x = y R x A
7 velpw x 𝒫 A x A
8 6 7 syl6ibr φ x = y R x 𝒫 A
9 8 rexlimdvw φ y A x = y R x 𝒫 A
10 3 9 syl5bi φ x A / R x 𝒫 A
11 10 ssrdv φ A / R 𝒫 A