Metamath Proof Explorer


Theorem qsssubdrg

Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion qsssubdrg RSubRingfldfld𝑠RDivRingR

Proof

Step Hyp Ref Expression
1 elq zxyz=xy
2 drngring fld𝑠RDivRingfld𝑠RRing
3 2 ad2antlr RSubRingfldfld𝑠RDivRingxyfld𝑠RRing
4 zsssubrg RSubRingfldR
5 4 ad2antrr RSubRingfldfld𝑠RDivRingxyR
6 eqid fld𝑠R=fld𝑠R
7 6 subrgbas RSubRingfldR=Basefld𝑠R
8 7 ad2antrr RSubRingfldfld𝑠RDivRingxyR=Basefld𝑠R
9 5 8 sseqtrd RSubRingfldfld𝑠RDivRingxyBasefld𝑠R
10 simprl RSubRingfldfld𝑠RDivRingxyx
11 9 10 sseldd RSubRingfldfld𝑠RDivRingxyxBasefld𝑠R
12 nnz yy
13 12 ad2antll RSubRingfldfld𝑠RDivRingxyy
14 9 13 sseldd RSubRingfldfld𝑠RDivRingxyyBasefld𝑠R
15 nnne0 yy0
16 15 ad2antll RSubRingfldfld𝑠RDivRingxyy0
17 cnfld0 0=0fld
18 6 17 subrg0 RSubRingfld0=0fld𝑠R
19 18 ad2antrr RSubRingfldfld𝑠RDivRingxy0=0fld𝑠R
20 16 19 neeqtrd RSubRingfldfld𝑠RDivRingxyy0fld𝑠R
21 eqid Basefld𝑠R=Basefld𝑠R
22 eqid Unitfld𝑠R=Unitfld𝑠R
23 eqid 0fld𝑠R=0fld𝑠R
24 21 22 23 drngunit fld𝑠RDivRingyUnitfld𝑠RyBasefld𝑠Ry0fld𝑠R
25 24 ad2antlr RSubRingfldfld𝑠RDivRingxyyUnitfld𝑠RyBasefld𝑠Ry0fld𝑠R
26 14 20 25 mpbir2and RSubRingfldfld𝑠RDivRingxyyUnitfld𝑠R
27 eqid /rfld𝑠R=/rfld𝑠R
28 21 22 27 dvrcl fld𝑠RRingxBasefld𝑠RyUnitfld𝑠Rx/rfld𝑠RyBasefld𝑠R
29 3 11 26 28 syl3anc RSubRingfldfld𝑠RDivRingxyx/rfld𝑠RyBasefld𝑠R
30 simpll RSubRingfldfld𝑠RDivRingxyRSubRingfld
31 5 10 sseldd RSubRingfldfld𝑠RDivRingxyxR
32 cnflddiv ÷=/rfld
33 6 32 22 27 subrgdv RSubRingfldxRyUnitfld𝑠Rxy=x/rfld𝑠Ry
34 30 31 26 33 syl3anc RSubRingfldfld𝑠RDivRingxyxy=x/rfld𝑠Ry
35 29 34 8 3eltr4d RSubRingfldfld𝑠RDivRingxyxyR
36 eleq1 z=xyzRxyR
37 35 36 syl5ibrcom RSubRingfldfld𝑠RDivRingxyz=xyzR
38 37 rexlimdvva RSubRingfldfld𝑠RDivRingxyz=xyzR
39 1 38 biimtrid RSubRingfldfld𝑠RDivRingzzR
40 39 ssrdv RSubRingfldfld𝑠RDivRingR