Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|
2 |
|
drngring |
|
3 |
2
|
ad2antlr |
|
4 |
|
zsssubrg |
|
5 |
4
|
ad2antrr |
|
6 |
|
eqid |
|
7 |
6
|
subrgbas |
|
8 |
7
|
ad2antrr |
|
9 |
5 8
|
sseqtrd |
|
10 |
|
simprl |
|
11 |
9 10
|
sseldd |
|
12 |
|
nnz |
|
13 |
12
|
ad2antll |
|
14 |
9 13
|
sseldd |
|
15 |
|
nnne0 |
|
16 |
15
|
ad2antll |
|
17 |
|
cnfld0 |
|
18 |
6 17
|
subrg0 |
|
19 |
18
|
ad2antrr |
|
20 |
16 19
|
neeqtrd |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
21 22 23
|
drngunit |
|
25 |
24
|
ad2antlr |
|
26 |
14 20 25
|
mpbir2and |
|
27 |
|
eqid |
|
28 |
21 22 27
|
dvrcl |
|
29 |
3 11 26 28
|
syl3anc |
|
30 |
|
simpll |
|
31 |
5 10
|
sseldd |
|
32 |
|
cnflddiv |
|
33 |
6 32 22 27
|
subrgdv |
|
34 |
30 31 26 33
|
syl3anc |
|
35 |
29 34 8
|
3eltr4d |
|
36 |
|
eleq1 |
|
37 |
35 36
|
syl5ibrcom |
|
38 |
37
|
rexlimdvva |
|
39 |
1 38
|
syl5bi |
|
40 |
39
|
ssrdv |
|