Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | qsssubdrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq | |
|
2 | drngring | |
|
3 | 2 | ad2antlr | |
4 | zsssubrg | |
|
5 | 4 | ad2antrr | |
6 | eqid | |
|
7 | 6 | subrgbas | |
8 | 7 | ad2antrr | |
9 | 5 8 | sseqtrd | |
10 | simprl | |
|
11 | 9 10 | sseldd | |
12 | nnz | |
|
13 | 12 | ad2antll | |
14 | 9 13 | sseldd | |
15 | nnne0 | |
|
16 | 15 | ad2antll | |
17 | cnfld0 | |
|
18 | 6 17 | subrg0 | |
19 | 18 | ad2antrr | |
20 | 16 19 | neeqtrd | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 21 22 23 | drngunit | |
25 | 24 | ad2antlr | |
26 | 14 20 25 | mpbir2and | |
27 | eqid | |
|
28 | 21 22 27 | dvrcl | |
29 | 3 11 26 28 | syl3anc | |
30 | simpll | |
|
31 | 5 10 | sseldd | |
32 | cnflddiv | |
|
33 | 6 32 22 27 | subrgdv | |
34 | 30 31 26 33 | syl3anc | |
35 | 29 34 8 | 3eltr4d | |
36 | eleq1 | |
|
37 | 35 36 | syl5ibrcom | |
38 | 37 | rexlimdvva | |
39 | 1 38 | biimtrid | |
40 | 39 | ssrdv | |