Metamath Proof Explorer


Theorem qsssubdrg

Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion qsssubdrg R SubRing fld fld 𝑠 R DivRing R

Proof

Step Hyp Ref Expression
1 elq z x y z = x y
2 drngring fld 𝑠 R DivRing fld 𝑠 R Ring
3 2 ad2antlr R SubRing fld fld 𝑠 R DivRing x y fld 𝑠 R Ring
4 zsssubrg R SubRing fld R
5 4 ad2antrr R SubRing fld fld 𝑠 R DivRing x y R
6 eqid fld 𝑠 R = fld 𝑠 R
7 6 subrgbas R SubRing fld R = Base fld 𝑠 R
8 7 ad2antrr R SubRing fld fld 𝑠 R DivRing x y R = Base fld 𝑠 R
9 5 8 sseqtrd R SubRing fld fld 𝑠 R DivRing x y Base fld 𝑠 R
10 simprl R SubRing fld fld 𝑠 R DivRing x y x
11 9 10 sseldd R SubRing fld fld 𝑠 R DivRing x y x Base fld 𝑠 R
12 nnz y y
13 12 ad2antll R SubRing fld fld 𝑠 R DivRing x y y
14 9 13 sseldd R SubRing fld fld 𝑠 R DivRing x y y Base fld 𝑠 R
15 nnne0 y y 0
16 15 ad2antll R SubRing fld fld 𝑠 R DivRing x y y 0
17 cnfld0 0 = 0 fld
18 6 17 subrg0 R SubRing fld 0 = 0 fld 𝑠 R
19 18 ad2antrr R SubRing fld fld 𝑠 R DivRing x y 0 = 0 fld 𝑠 R
20 16 19 neeqtrd R SubRing fld fld 𝑠 R DivRing x y y 0 fld 𝑠 R
21 eqid Base fld 𝑠 R = Base fld 𝑠 R
22 eqid Unit fld 𝑠 R = Unit fld 𝑠 R
23 eqid 0 fld 𝑠 R = 0 fld 𝑠 R
24 21 22 23 drngunit fld 𝑠 R DivRing y Unit fld 𝑠 R y Base fld 𝑠 R y 0 fld 𝑠 R
25 24 ad2antlr R SubRing fld fld 𝑠 R DivRing x y y Unit fld 𝑠 R y Base fld 𝑠 R y 0 fld 𝑠 R
26 14 20 25 mpbir2and R SubRing fld fld 𝑠 R DivRing x y y Unit fld 𝑠 R
27 eqid / r fld 𝑠 R = / r fld 𝑠 R
28 21 22 27 dvrcl fld 𝑠 R Ring x Base fld 𝑠 R y Unit fld 𝑠 R x / r fld 𝑠 R y Base fld 𝑠 R
29 3 11 26 28 syl3anc R SubRing fld fld 𝑠 R DivRing x y x / r fld 𝑠 R y Base fld 𝑠 R
30 simpll R SubRing fld fld 𝑠 R DivRing x y R SubRing fld
31 5 10 sseldd R SubRing fld fld 𝑠 R DivRing x y x R
32 cnflddiv ÷ = / r fld
33 6 32 22 27 subrgdv R SubRing fld x R y Unit fld 𝑠 R x y = x / r fld 𝑠 R y
34 30 31 26 33 syl3anc R SubRing fld fld 𝑠 R DivRing x y x y = x / r fld 𝑠 R y
35 29 34 8 3eltr4d R SubRing fld fld 𝑠 R DivRing x y x y R
36 eleq1 z = x y z R x y R
37 35 36 syl5ibrcom R SubRing fld fld 𝑠 R DivRing x y z = x y z R
38 37 rexlimdvva R SubRing fld fld 𝑠 R DivRing x y z = x y z R
39 1 38 syl5bi R SubRing fld fld 𝑠 R DivRing z z R
40 39 ssrdv R SubRing fld fld 𝑠 R DivRing R