Database
REAL AND COMPLEX NUMBERS
Integer sets
Rational numbers (as a subset of complex numbers)
qsubcl
Next ⟩
qreccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
qsubcl
Description:
Closure of subtraction of rationals.
(Contributed by
NM
, 2-Aug-2004)
Ref
Expression
Assertion
qsubcl
⊢
A
∈
ℚ
∧
B
∈
ℚ
→
A
−
B
∈
ℚ
Proof
Step
Hyp
Ref
Expression
1
qcn
⊢
A
∈
ℚ
→
A
∈
ℂ
2
qcn
⊢
B
∈
ℚ
→
B
∈
ℂ
3
negsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
=
A
−
B
4
1
2
3
syl2an
⊢
A
∈
ℚ
∧
B
∈
ℚ
→
A
+
−
B
=
A
−
B
5
qnegcl
⊢
B
∈
ℚ
→
−
B
∈
ℚ
6
qaddcl
⊢
A
∈
ℚ
∧
−
B
∈
ℚ
→
A
+
−
B
∈
ℚ
7
5
6
sylan2
⊢
A
∈
ℚ
∧
B
∈
ℚ
→
A
+
−
B
∈
ℚ
8
4
7
eqeltrrd
⊢
A
∈
ℚ
∧
B
∈
ℚ
→
A
−
B
∈
ℚ