Metamath Proof Explorer


Theorem qsubdrg

Description: The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion qsubdrg SubRing fld fld 𝑠 DivRing

Proof

Step Hyp Ref Expression
1 qcn x x
2 qaddcl x y x + y
3 qnegcl x x
4 zssq
5 1z 1
6 4 5 sselii 1
7 qmulcl x y x y
8 qreccl x x 0 1 x
9 1 2 3 6 7 8 cnsubdrglem SubRing fld fld 𝑠 DivRing