Step |
Hyp |
Ref |
Expression |
1 |
|
qtoptopon |
|
2 |
|
topontop |
|
3 |
|
eqid |
|
4 |
3
|
iscld |
|
5 |
1 2 4
|
3syl |
|
6 |
|
toponuni |
|
7 |
1 6
|
syl |
|
8 |
7
|
sseq2d |
|
9 |
7
|
difeq1d |
|
10 |
9
|
eleq1d |
|
11 |
8 10
|
anbi12d |
|
12 |
|
elqtop3 |
|
13 |
12
|
adantr |
|
14 |
|
difss |
|
15 |
14
|
biantrur |
|
16 |
|
fofun |
|
17 |
16
|
ad2antlr |
|
18 |
|
funcnvcnv |
|
19 |
|
imadif |
|
20 |
17 18 19
|
3syl |
|
21 |
|
fof |
|
22 |
|
fimacnv |
|
23 |
21 22
|
syl |
|
24 |
23
|
ad2antlr |
|
25 |
|
toponuni |
|
26 |
25
|
ad2antrr |
|
27 |
24 26
|
eqtrd |
|
28 |
27
|
difeq1d |
|
29 |
20 28
|
eqtrd |
|
30 |
29
|
eleq1d |
|
31 |
|
topontop |
|
32 |
31
|
ad2antrr |
|
33 |
|
cnvimass |
|
34 |
|
fofn |
|
35 |
34
|
fndmd |
|
36 |
35
|
ad2antlr |
|
37 |
33 36
|
sseqtrid |
|
38 |
37 26
|
sseqtrd |
|
39 |
|
eqid |
|
40 |
39
|
iscld2 |
|
41 |
32 38 40
|
syl2anc |
|
42 |
30 41
|
bitr4d |
|
43 |
15 42
|
bitr3id |
|
44 |
13 43
|
bitrd |
|
45 |
44
|
pm5.32da |
|
46 |
5 11 45
|
3bitr2d |
|