| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopomap.4 |
|
| 2 |
|
qtopomap.5 |
|
| 3 |
|
qtopomap.6 |
|
| 4 |
|
qtopcmap.7 |
|
| 5 |
|
qtopss |
|
| 6 |
2 1 3 5
|
syl3anc |
|
| 7 |
|
cntop1 |
|
| 8 |
2 7
|
syl |
|
| 9 |
|
toptopon2 |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
cnf2 |
|
| 12 |
10 1 2 11
|
syl3anc |
|
| 13 |
12
|
ffnd |
|
| 14 |
|
df-fo |
|
| 15 |
13 3 14
|
sylanbrc |
|
| 16 |
|
eqid |
|
| 17 |
16
|
elqtop2 |
|
| 18 |
8 15 17
|
syl2anc |
|
| 19 |
15
|
adantr |
|
| 20 |
|
difss |
|
| 21 |
|
foimacnv |
|
| 22 |
19 20 21
|
sylancl |
|
| 23 |
1
|
adantr |
|
| 24 |
|
toponuni |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
difeq1d |
|
| 27 |
22 26
|
eqtrd |
|
| 28 |
|
imaeq2 |
|
| 29 |
28
|
eleq1d |
|
| 30 |
4
|
ralrimiva |
|
| 31 |
30
|
adantr |
|
| 32 |
|
fofun |
|
| 33 |
|
funcnvcnv |
|
| 34 |
|
imadif |
|
| 35 |
19 32 33 34
|
4syl |
|
| 36 |
12
|
adantr |
|
| 37 |
|
fimacnv |
|
| 38 |
36 37
|
syl |
|
| 39 |
38
|
difeq1d |
|
| 40 |
35 39
|
eqtrd |
|
| 41 |
8
|
adantr |
|
| 42 |
|
simprr |
|
| 43 |
16
|
opncld |
|
| 44 |
41 42 43
|
syl2anc |
|
| 45 |
40 44
|
eqeltrd |
|
| 46 |
29 31 45
|
rspcdva |
|
| 47 |
27 46
|
eqeltrrd |
|
| 48 |
|
topontop |
|
| 49 |
23 48
|
syl |
|
| 50 |
|
simprl |
|
| 51 |
50 25
|
sseqtrd |
|
| 52 |
|
eqid |
|
| 53 |
52
|
isopn2 |
|
| 54 |
49 51 53
|
syl2anc |
|
| 55 |
47 54
|
mpbird |
|
| 56 |
55
|
ex |
|
| 57 |
18 56
|
sylbid |
|
| 58 |
57
|
ssrdv |
|
| 59 |
6 58
|
eqssd |
|