Step |
Hyp |
Ref |
Expression |
1 |
|
qtopomap.4 |
|
2 |
|
qtopomap.5 |
|
3 |
|
qtopomap.6 |
|
4 |
|
qtopcmap.7 |
|
5 |
|
qtopss |
|
6 |
2 1 3 5
|
syl3anc |
|
7 |
|
cntop1 |
|
8 |
2 7
|
syl |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
|
cnf2 |
|
12 |
10 1 2 11
|
syl3anc |
|
13 |
12
|
ffnd |
|
14 |
|
df-fo |
|
15 |
13 3 14
|
sylanbrc |
|
16 |
|
eqid |
|
17 |
16
|
elqtop2 |
|
18 |
8 15 17
|
syl2anc |
|
19 |
15
|
adantr |
|
20 |
|
difss |
|
21 |
|
foimacnv |
|
22 |
19 20 21
|
sylancl |
|
23 |
1
|
adantr |
|
24 |
|
toponuni |
|
25 |
23 24
|
syl |
|
26 |
25
|
difeq1d |
|
27 |
22 26
|
eqtrd |
|
28 |
|
imaeq2 |
|
29 |
28
|
eleq1d |
|
30 |
4
|
ralrimiva |
|
31 |
30
|
adantr |
|
32 |
|
fofun |
|
33 |
|
funcnvcnv |
|
34 |
|
imadif |
|
35 |
19 32 33 34
|
4syl |
|
36 |
12
|
adantr |
|
37 |
|
fimacnv |
|
38 |
36 37
|
syl |
|
39 |
38
|
difeq1d |
|
40 |
35 39
|
eqtrd |
|
41 |
8
|
adantr |
|
42 |
|
simprr |
|
43 |
16
|
opncld |
|
44 |
41 42 43
|
syl2anc |
|
45 |
40 44
|
eqeltrd |
|
46 |
29 31 45
|
rspcdva |
|
47 |
27 46
|
eqeltrrd |
|
48 |
|
topontop |
|
49 |
23 48
|
syl |
|
50 |
|
simprl |
|
51 |
50 25
|
sseqtrd |
|
52 |
|
eqid |
|
53 |
52
|
isopn2 |
|
54 |
49 51 53
|
syl2anc |
|
55 |
47 54
|
mpbird |
|
56 |
55
|
ex |
|
57 |
18 56
|
sylbid |
|
58 |
57
|
ssrdv |
|
59 |
6 58
|
eqssd |
|