Metamath Proof Explorer


Theorem qtopcmp

Description: A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis qtopcmp.1 X = J
Assertion qtopcmp J Comp F Fn X J qTop F Comp

Proof

Step Hyp Ref Expression
1 qtopcmp.1 X = J
2 cmptop J Comp J Top
3 eqid J qTop F = J qTop F
4 3 cncmp J Comp F : X onto J qTop F F J Cn J qTop F J qTop F Comp
5 1 2 4 qtopcmplem J Comp F Fn X J qTop F Comp