Metamath Proof Explorer


Theorem qtopcmplem

Description: Lemma for qtopcmp and qtopconn . (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses qtopcmp.1 X = J
qtopcmplem.1 J A J Top
qtopcmplem.2 J A F : X onto J qTop F F J Cn J qTop F J qTop F A
Assertion qtopcmplem J A F Fn X J qTop F A

Proof

Step Hyp Ref Expression
1 qtopcmp.1 X = J
2 qtopcmplem.1 J A J Top
3 qtopcmplem.2 J A F : X onto J qTop F F J Cn J qTop F J qTop F A
4 simpl J A F Fn X J A
5 simpr J A F Fn X F Fn X
6 dffn4 F Fn X F : X onto ran F
7 5 6 sylib J A F Fn X F : X onto ran F
8 1 qtopuni J Top F : X onto ran F ran F = J qTop F
9 2 8 sylan J A F : X onto ran F ran F = J qTop F
10 6 9 sylan2b J A F Fn X ran F = J qTop F
11 foeq3 ran F = J qTop F F : X onto ran F F : X onto J qTop F
12 10 11 syl J A F Fn X F : X onto ran F F : X onto J qTop F
13 7 12 mpbid J A F Fn X F : X onto J qTop F
14 1 toptopon J Top J TopOn X
15 2 14 sylib J A J TopOn X
16 qtopid J TopOn X F Fn X F J Cn J qTop F
17 15 16 sylan J A F Fn X F J Cn J qTop F
18 4 13 17 3 syl3anc J A F Fn X J qTop F A