Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopcn | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | |
|
| 2 | simplrr | |
|
| 3 | 1 2 | fssdm | |
| 4 | simplll | |
|
| 5 | simplrl | |
|
| 6 | elqtop3 | |
|
| 7 | 4 5 6 | syl2anc | |
| 8 | 3 7 | mpbirand | |
| 9 | cnvco | |
|
| 10 | 9 | imaeq1i | |
| 11 | imaco | |
|
| 12 | 10 11 | eqtri | |
| 13 | 12 | eleq1i | |
| 14 | 8 13 | bitr4di | |
| 15 | 14 | ralbidva | |
| 16 | simprr | |
|
| 17 | 16 | biantrurd | |
| 18 | fof | |
|
| 19 | 18 | ad2antrl | |
| 20 | fco | |
|
| 21 | 16 19 20 | syl2anc | |
| 22 | 21 | biantrurd | |
| 23 | 15 17 22 | 3bitr3d | |
| 24 | qtoptopon | |
|
| 25 | 24 | ad2ant2r | |
| 26 | simplr | |
|
| 27 | iscn | |
|
| 28 | 25 26 27 | syl2anc | |
| 29 | iscn | |
|
| 30 | 29 | adantr | |
| 31 | 23 28 30 | 3bitr4d | |