Metamath Proof Explorer


Theorem qtopconn

Description: A quotient of a connected space is connected. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis qtopcmp.1 X = J
Assertion qtopconn J Conn F Fn X J qTop F Conn

Proof

Step Hyp Ref Expression
1 qtopcmp.1 X = J
2 conntop J Conn J Top
3 eqid J qTop F = J qTop F
4 3 cnconn J Conn F : X onto J qTop F F J Cn J qTop F J qTop F Conn
5 1 2 4 qtopcmplem J Conn F Fn X J qTop F Conn