Step |
Hyp |
Ref |
Expression |
1 |
|
qtopeu.1 |
|
2 |
|
qtopeu.3 |
|
3 |
|
qtopeu.4 |
|
4 |
|
qtopeu.5 |
|
5 |
|
fofn |
|
6 |
2 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
|
fniniseg |
|
9 |
7 8
|
syl |
|
10 |
|
eqcom |
|
11 |
10
|
3anbi3i |
|
12 |
|
3anass |
|
13 |
11 12
|
bitri |
|
14 |
13 4
|
sylan2br |
|
15 |
14
|
eqcomd |
|
16 |
15
|
expr |
|
17 |
9 16
|
sylbid |
|
18 |
17
|
ralrimiv |
|
19 |
|
cntop2 |
|
20 |
3 19
|
syl |
|
21 |
|
toptopon2 |
|
22 |
20 21
|
sylib |
|
23 |
|
cnf2 |
|
24 |
1 22 3 23
|
syl3anc |
|
25 |
24
|
ffnd |
|
26 |
25
|
adantr |
|
27 |
|
cnvimass |
|
28 |
|
fof |
|
29 |
2 28
|
syl |
|
30 |
29
|
fdmd |
|
31 |
30
|
adantr |
|
32 |
27 31
|
sseqtrid |
|
33 |
|
eqeq1 |
|
34 |
33
|
ralima |
|
35 |
26 32 34
|
syl2anc |
|
36 |
18 35
|
mpbird |
|
37 |
24
|
fdmd |
|
38 |
37
|
eleq2d |
|
39 |
38
|
biimpar |
|
40 |
|
simpr |
|
41 |
|
eqidd |
|
42 |
|
fniniseg |
|
43 |
7 42
|
syl |
|
44 |
40 41 43
|
mpbir2and |
|
45 |
|
inelcm |
|
46 |
39 44 45
|
syl2anc |
|
47 |
|
imadisj |
|
48 |
47
|
necon3bii |
|
49 |
46 48
|
sylibr |
|
50 |
|
eqsn |
|
51 |
49 50
|
syl |
|
52 |
36 51
|
mpbird |
|
53 |
52
|
unieqd |
|
54 |
|
fvex |
|
55 |
54
|
unisn |
|
56 |
53 55
|
eqtr2di |
|
57 |
56
|
mpteq2dva |
|
58 |
24
|
feqmptd |
|
59 |
29
|
ffvelrnda |
|
60 |
29
|
feqmptd |
|
61 |
|
eqidd |
|
62 |
|
sneq |
|
63 |
62
|
imaeq2d |
|
64 |
63
|
imaeq2d |
|
65 |
64
|
unieqd |
|
66 |
59 60 61 65
|
fmptco |
|
67 |
57 58 66
|
3eqtr4d |
|
68 |
67 3
|
eqeltrrd |
|
69 |
24
|
ffvelrnda |
|
70 |
56 69
|
eqeltrrd |
|
71 |
70
|
ralrimiva |
|
72 |
65
|
eqcomd |
|
73 |
72
|
eqcoms |
|
74 |
73
|
eleq1d |
|
75 |
74
|
cbvfo |
|
76 |
2 75
|
syl |
|
77 |
71 76
|
mpbid |
|
78 |
|
eqid |
|
79 |
78
|
fmpt |
|
80 |
77 79
|
sylib |
|
81 |
|
qtopcn |
|
82 |
1 22 2 80 81
|
syl22anc |
|
83 |
68 82
|
mpbird |
|
84 |
|
coeq1 |
|
85 |
84
|
rspceeqv |
|
86 |
83 67 85
|
syl2anc |
|
87 |
|
eqtr2 |
|
88 |
2
|
adantr |
|
89 |
|
qtoptopon |
|
90 |
1 2 89
|
syl2anc |
|
91 |
90
|
adantr |
|
92 |
22
|
adantr |
|
93 |
|
simprl |
|
94 |
|
cnf2 |
|
95 |
91 92 93 94
|
syl3anc |
|
96 |
95
|
ffnd |
|
97 |
|
simprr |
|
98 |
|
cnf2 |
|
99 |
91 92 97 98
|
syl3anc |
|
100 |
99
|
ffnd |
|
101 |
|
cocan2 |
|
102 |
88 96 100 101
|
syl3anc |
|
103 |
87 102
|
syl5ib |
|
104 |
103
|
ralrimivva |
|
105 |
|
coeq1 |
|
106 |
105
|
eqeq2d |
|
107 |
106
|
reu4 |
|
108 |
86 104 107
|
sylanbrc |
|