Metamath Proof Explorer


Theorem qtophmeo

Description: If two functions on a base topology J make the same identifications in order to create quotient spaces J qTop F and J qTop G , then not only are J qTop F and J qTop G homeomorphic, but there is a unique homeomorphism that makes the diagram commute. (Contributed by Mario Carneiro, 24-Mar-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses qtophmeo.2 φ J TopOn X
qtophmeo.3 φ F : X onto Y
qtophmeo.4 φ G : X onto Y
qtophmeo.5 φ x X y X F x = F y G x = G y
Assertion qtophmeo φ ∃! f J qTop F Homeo J qTop G G = f F

Proof

Step Hyp Ref Expression
1 qtophmeo.2 φ J TopOn X
2 qtophmeo.3 φ F : X onto Y
3 qtophmeo.4 φ G : X onto Y
4 qtophmeo.5 φ x X y X F x = F y G x = G y
5 fofn G : X onto Y G Fn X
6 3 5 syl φ G Fn X
7 qtopid J TopOn X G Fn X G J Cn J qTop G
8 1 6 7 syl2anc φ G J Cn J qTop G
9 df-3an x X y X F x = F y x X y X F x = F y
10 4 biimpd φ x X y X F x = F y G x = G y
11 10 impr φ x X y X F x = F y G x = G y
12 9 11 sylan2b φ x X y X F x = F y G x = G y
13 1 2 8 12 qtopeu φ ∃! f J qTop F Cn J qTop G G = f F
14 reurex ∃! f J qTop F Cn J qTop G G = f F f J qTop F Cn J qTop G G = f F
15 13 14 syl φ f J qTop F Cn J qTop G G = f F
16 simprl φ f J qTop F Cn J qTop G G = f F f J qTop F Cn J qTop G
17 fofn F : X onto Y F Fn X
18 2 17 syl φ F Fn X
19 qtopid J TopOn X F Fn X F J Cn J qTop F
20 1 18 19 syl2anc φ F J Cn J qTop F
21 df-3an x X y X G x = G y x X y X G x = G y
22 4 biimprd φ x X y X G x = G y F x = F y
23 22 impr φ x X y X G x = G y F x = F y
24 21 23 sylan2b φ x X y X G x = G y F x = F y
25 1 3 20 24 qtopeu φ ∃! g J qTop G Cn J qTop F F = g G
26 25 adantr φ f J qTop F Cn J qTop G G = f F ∃! g J qTop G Cn J qTop F F = g G
27 reurex ∃! g J qTop G Cn J qTop F F = g G g J qTop G Cn J qTop F F = g G
28 26 27 syl φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G
29 qtoptopon J TopOn X F : X onto Y J qTop F TopOn Y
30 1 2 29 syl2anc φ J qTop F TopOn Y
31 30 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G J qTop F TopOn Y
32 qtoptopon J TopOn X G : X onto Y J qTop G TopOn Y
33 1 3 32 syl2anc φ J qTop G TopOn Y
34 33 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G J qTop G TopOn Y
35 simplrl φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f J qTop F Cn J qTop G
36 cnf2 J qTop F TopOn Y J qTop G TopOn Y f J qTop F Cn J qTop G f : Y Y
37 31 34 35 36 syl3anc φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f : Y Y
38 simprl φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G g J qTop G Cn J qTop F
39 cnf2 J qTop G TopOn Y J qTop F TopOn Y g J qTop G Cn J qTop F g : Y Y
40 34 31 38 39 syl3anc φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G g : Y Y
41 coeq1 h = g f h F = g f F
42 41 eqeq2d h = g f F = h F F = g f F
43 coeq1 h = I Y h F = I Y F
44 43 eqeq2d h = I Y F = h F F = I Y F
45 simpr3 φ x X y X F x = F y F x = F y
46 1 2 20 45 qtopeu φ ∃! h J qTop F Cn J qTop F F = h F
47 46 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G ∃! h J qTop F Cn J qTop F F = h F
48 cnco f J qTop F Cn J qTop G g J qTop G Cn J qTop F g f J qTop F Cn J qTop F
49 35 38 48 syl2anc φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G g f J qTop F Cn J qTop F
50 idcn J qTop F TopOn Y I Y J qTop F Cn J qTop F
51 30 50 syl φ I Y J qTop F Cn J qTop F
52 51 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G I Y J qTop F Cn J qTop F
53 simprr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G F = g G
54 simplrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G G = f F
55 54 coeq2d φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G g G = g f F
56 53 55 eqtrd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G F = g f F
57 coass g f F = g f F
58 56 57 eqtr4di φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G F = g f F
59 fof F : X onto Y F : X Y
60 2 59 syl φ F : X Y
61 60 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G F : X Y
62 fcoi2 F : X Y I Y F = F
63 61 62 syl φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G I Y F = F
64 63 eqcomd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G F = I Y F
65 42 44 47 49 52 58 64 reu2eqd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G g f = I Y
66 coeq1 h = f g h G = f g G
67 66 eqeq2d h = f g G = h G G = f g G
68 coeq1 h = I Y h G = I Y G
69 68 eqeq2d h = I Y G = h G G = I Y G
70 simpr3 φ x X y X G x = G y G x = G y
71 1 3 8 70 qtopeu φ ∃! h J qTop G Cn J qTop G G = h G
72 71 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G ∃! h J qTop G Cn J qTop G G = h G
73 cnco g J qTop G Cn J qTop F f J qTop F Cn J qTop G f g J qTop G Cn J qTop G
74 38 35 73 syl2anc φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f g J qTop G Cn J qTop G
75 idcn J qTop G TopOn Y I Y J qTop G Cn J qTop G
76 33 75 syl φ I Y J qTop G Cn J qTop G
77 76 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G I Y J qTop G Cn J qTop G
78 53 coeq2d φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f F = f g G
79 54 78 eqtrd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G G = f g G
80 coass f g G = f g G
81 79 80 eqtr4di φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G G = f g G
82 fof G : X onto Y G : X Y
83 3 82 syl φ G : X Y
84 83 ad2antrr φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G G : X Y
85 fcoi2 G : X Y I Y G = G
86 84 85 syl φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G I Y G = G
87 86 eqcomd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G G = I Y G
88 67 69 72 74 77 81 87 reu2eqd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f g = I Y
89 37 40 65 88 2fcoidinvd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f -1 = g
90 89 38 eqeltrd φ f J qTop F Cn J qTop G G = f F g J qTop G Cn J qTop F F = g G f -1 J qTop G Cn J qTop F
91 28 90 rexlimddv φ f J qTop F Cn J qTop G G = f F f -1 J qTop G Cn J qTop F
92 ishmeo f J qTop F Homeo J qTop G f J qTop F Cn J qTop G f -1 J qTop G Cn J qTop F
93 16 91 92 sylanbrc φ f J qTop F Cn J qTop G G = f F f J qTop F Homeo J qTop G
94 simprr φ f J qTop F Cn J qTop G G = f F G = f F
95 15 93 94 reximssdv φ f J qTop F Homeo J qTop G G = f F
96 eqtr2 G = f F G = g F f F = g F
97 2 adantr φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G F : X onto Y
98 30 adantr φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G J qTop F TopOn Y
99 33 adantr φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G J qTop G TopOn Y
100 simprl φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G f J qTop F Homeo J qTop G
101 hmeof1o2 J qTop F TopOn Y J qTop G TopOn Y f J qTop F Homeo J qTop G f : Y 1-1 onto Y
102 98 99 100 101 syl3anc φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G f : Y 1-1 onto Y
103 f1ofn f : Y 1-1 onto Y f Fn Y
104 102 103 syl φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G f Fn Y
105 simprr φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G g J qTop F Homeo J qTop G
106 hmeof1o2 J qTop F TopOn Y J qTop G TopOn Y g J qTop F Homeo J qTop G g : Y 1-1 onto Y
107 98 99 105 106 syl3anc φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G g : Y 1-1 onto Y
108 f1ofn g : Y 1-1 onto Y g Fn Y
109 107 108 syl φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G g Fn Y
110 cocan2 F : X onto Y f Fn Y g Fn Y f F = g F f = g
111 97 104 109 110 syl3anc φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G f F = g F f = g
112 96 111 syl5ib φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G G = f F G = g F f = g
113 112 ralrimivva φ f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G G = f F G = g F f = g
114 coeq1 f = g f F = g F
115 114 eqeq2d f = g G = f F G = g F
116 115 reu4 ∃! f J qTop F Homeo J qTop G G = f F f J qTop F Homeo J qTop G G = f F f J qTop F Homeo J qTop G g J qTop F Homeo J qTop G G = f F G = g F f = g
117 95 113 116 sylanbrc φ ∃! f J qTop F Homeo J qTop G G = f F