Metamath Proof Explorer


Theorem qtopid

Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion qtopid J TopOn X F Fn X F J Cn J qTop F

Proof

Step Hyp Ref Expression
1 simpr J TopOn X F Fn X F Fn X
2 dffn4 F Fn X F : X onto ran F
3 1 2 sylib J TopOn X F Fn X F : X onto ran F
4 fof F : X onto ran F F : X ran F
5 3 4 syl J TopOn X F Fn X F : X ran F
6 elqtop3 J TopOn X F : X onto ran F x J qTop F x ran F F -1 x J
7 3 6 syldan J TopOn X F Fn X x J qTop F x ran F F -1 x J
8 7 simplbda J TopOn X F Fn X x J qTop F F -1 x J
9 8 ralrimiva J TopOn X F Fn X x J qTop F F -1 x J
10 qtoptopon J TopOn X F : X onto ran F J qTop F TopOn ran F
11 3 10 syldan J TopOn X F Fn X J qTop F TopOn ran F
12 iscn J TopOn X J qTop F TopOn ran F F J Cn J qTop F F : X ran F x J qTop F F -1 x J
13 11 12 syldan J TopOn X F Fn X F J Cn J qTop F F : X ran F x J qTop F F -1 x J
14 5 9 13 mpbir2and J TopOn X F Fn X F J Cn J qTop F