Metamath Proof Explorer


Theorem qtopkgen

Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis qtopcmp.1 X = J
Assertion qtopkgen J ran 𝑘Gen F Fn X J qTop F ran 𝑘Gen

Proof

Step Hyp Ref Expression
1 qtopcmp.1 X = J
2 kgentop J ran 𝑘Gen J Top
3 1 qtoptop J Top F Fn X J qTop F Top
4 2 3 sylan J ran 𝑘Gen F Fn X J qTop F Top
5 elssuni x 𝑘Gen J qTop F x 𝑘Gen J qTop F
6 5 adantl J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x 𝑘Gen J qTop F
7 4 adantr J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J qTop F Top
8 eqid J qTop F = J qTop F
9 8 kgenuni J qTop F Top J qTop F = 𝑘Gen J qTop F
10 7 9 syl J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J qTop F = 𝑘Gen J qTop F
11 6 10 sseqtrrd J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x J qTop F
12 simpll J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J ran 𝑘Gen
13 12 2 syl J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J Top
14 simplr J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F F Fn X
15 dffn4 F Fn X F : X onto ran F
16 14 15 sylib J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F F : X onto ran F
17 1 qtopuni J Top F : X onto ran F ran F = J qTop F
18 13 16 17 syl2anc J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F ran F = J qTop F
19 11 18 sseqtrrd J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x ran F
20 1 toptopon J Top J TopOn X
21 13 20 sylib J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J TopOn X
22 qtopid J TopOn X F Fn X F J Cn J qTop F
23 21 14 22 syl2anc J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F F J Cn J qTop F
24 kgencn3 J ran 𝑘Gen J qTop F Top J Cn J qTop F = J Cn 𝑘Gen J qTop F
25 12 7 24 syl2anc J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F J Cn J qTop F = J Cn 𝑘Gen J qTop F
26 23 25 eleqtrd J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F F J Cn 𝑘Gen J qTop F
27 cnima F J Cn 𝑘Gen J qTop F x 𝑘Gen J qTop F F -1 x J
28 26 27 sylancom J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F F -1 x J
29 1 elqtop2 J ran 𝑘Gen F : X onto ran F x J qTop F x ran F F -1 x J
30 12 16 29 syl2anc J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x J qTop F x ran F F -1 x J
31 19 28 30 mpbir2and J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x J qTop F
32 31 ex J ran 𝑘Gen F Fn X x 𝑘Gen J qTop F x J qTop F
33 32 ssrdv J ran 𝑘Gen F Fn X 𝑘Gen J qTop F J qTop F
34 iskgen2 J qTop F ran 𝑘Gen J qTop F Top 𝑘Gen J qTop F J qTop F
35 4 33 34 sylanbrc J ran 𝑘Gen F Fn X J qTop F ran 𝑘Gen