Metamath Proof Explorer


Theorem qtoptop

Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtoptop.1 X = J
Assertion qtoptop J Top F Fn X J qTop F Top

Proof

Step Hyp Ref Expression
1 qtoptop.1 X = J
2 simpl J Top F Fn X J Top
3 id F Fn X F Fn X
4 1 topopn J Top X J
5 fnex F Fn X X J F V
6 3 4 5 syl2anr J Top F Fn X F V
7 fnfun F Fn X Fun F
8 7 adantl J Top F Fn X Fun F
9 qtoptop2 J Top F V Fun F J qTop F Top
10 2 6 8 9 syl3anc J Top F Fn X J qTop F Top