Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
qtopres |
|
3 |
2
|
3ad2ant2 |
|
4 |
|
simp1 |
|
5 |
|
funres |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
funforn |
|
8 |
6 7
|
sylib |
|
9 |
|
dmres |
|
10 |
|
inss1 |
|
11 |
9 10
|
eqsstri |
|
12 |
11
|
a1i |
|
13 |
1
|
elqtop |
|
14 |
4 8 12 13
|
syl3anc |
|
15 |
14
|
simprbda |
|
16 |
|
velpw |
|
17 |
15 16
|
sylibr |
|
18 |
17
|
ex |
|
19 |
18
|
ssrdv |
|
20 |
|
sstr2 |
|
21 |
19 20
|
syl5com |
|
22 |
|
sspwuni |
|
23 |
21 22
|
syl6ib |
|
24 |
|
imauni |
|
25 |
14
|
simplbda |
|
26 |
25
|
ralrimiva |
|
27 |
|
ssralv |
|
28 |
26 27
|
mpan9 |
|
29 |
|
iunopn |
|
30 |
4 28 29
|
syl2an2r |
|
31 |
24 30
|
eqeltrid |
|
32 |
31
|
ex |
|
33 |
23 32
|
jcad |
|
34 |
1
|
elqtop |
|
35 |
4 8 12 34
|
syl3anc |
|
36 |
33 35
|
sylibrd |
|
37 |
36
|
alrimiv |
|
38 |
|
inss1 |
|
39 |
1
|
elqtop |
|
40 |
4 8 12 39
|
syl3anc |
|
41 |
40
|
biimpa |
|
42 |
41
|
adantrr |
|
43 |
42
|
simpld |
|
44 |
38 43
|
sstrid |
|
45 |
6
|
adantr |
|
46 |
|
inpreima |
|
47 |
45 46
|
syl |
|
48 |
4
|
adantr |
|
49 |
42
|
simprd |
|
50 |
25
|
adantrl |
|
51 |
|
inopn |
|
52 |
48 49 50 51
|
syl3anc |
|
53 |
47 52
|
eqeltrd |
|
54 |
1
|
elqtop |
|
55 |
4 8 12 54
|
syl3anc |
|
56 |
55
|
adantr |
|
57 |
44 53 56
|
mpbir2and |
|
58 |
57
|
ralrimivva |
|
59 |
|
ovex |
|
60 |
|
istopg |
|
61 |
59 60
|
ax-mp |
|
62 |
37 58 61
|
sylanbrc |
|
63 |
3 62
|
eqeltrd |
|