Metamath Proof Explorer


Theorem qtopval2

Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 X = J
Assertion qtopval2 J V F : Z onto Y Z X J qTop F = s 𝒫 Y | F -1 s J

Proof

Step Hyp Ref Expression
1 qtopval.1 X = J
2 simp1 J V F : Z onto Y Z X J V
3 fof F : Z onto Y F : Z Y
4 3 3ad2ant2 J V F : Z onto Y Z X F : Z Y
5 uniexg J V J V
6 5 3ad2ant1 J V F : Z onto Y Z X J V
7 1 6 eqeltrid J V F : Z onto Y Z X X V
8 simp3 J V F : Z onto Y Z X Z X
9 7 8 ssexd J V F : Z onto Y Z X Z V
10 fex F : Z Y Z V F V
11 4 9 10 syl2anc J V F : Z onto Y Z X F V
12 1 qtopval J V F V J qTop F = s 𝒫 F X | F -1 s X J
13 2 11 12 syl2anc J V F : Z onto Y Z X J qTop F = s 𝒫 F X | F -1 s X J
14 imassrn F X ran F
15 forn F : Z onto Y ran F = Y
16 15 3ad2ant2 J V F : Z onto Y Z X ran F = Y
17 14 16 sseqtrid J V F : Z onto Y Z X F X Y
18 foima F : Z onto Y F Z = Y
19 18 3ad2ant2 J V F : Z onto Y Z X F Z = Y
20 imass2 Z X F Z F X
21 8 20 syl J V F : Z onto Y Z X F Z F X
22 19 21 eqsstrrd J V F : Z onto Y Z X Y F X
23 17 22 eqssd J V F : Z onto Y Z X F X = Y
24 23 pweqd J V F : Z onto Y Z X 𝒫 F X = 𝒫 Y
25 cnvimass F -1 s dom F
26 25 4 fssdm J V F : Z onto Y Z X F -1 s Z
27 26 8 sstrd J V F : Z onto Y Z X F -1 s X
28 df-ss F -1 s X F -1 s X = F -1 s
29 27 28 sylib J V F : Z onto Y Z X F -1 s X = F -1 s
30 29 eleq1d J V F : Z onto Y Z X F -1 s X J F -1 s J
31 24 30 rabeqbidv J V F : Z onto Y Z X s 𝒫 F X | F -1 s X J = s 𝒫 Y | F -1 s J
32 13 31 eqtrd J V F : Z onto Y Z X J qTop F = s 𝒫 Y | F -1 s J