Metamath Proof Explorer


Theorem qtopval2

Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 X = J
Assertion qtopval2 J V F : Z onto Y Z X J qTop F = s 𝒫 Y | F -1 s J

Proof

Step Hyp Ref Expression
1 qtopval.1 X = J
2 simp1 J V F : Z onto Y Z X J V
3 fof F : Z onto Y F : Z Y
4 3 3ad2ant2 J V F : Z onto Y Z X F : Z Y
5 uniexg J V J V
6 5 3ad2ant1 J V F : Z onto Y Z X J V
7 1 6 eqeltrid J V F : Z onto Y Z X X V
8 simp3 J V F : Z onto Y Z X Z X
9 7 8 ssexd J V F : Z onto Y Z X Z V
10 4 9 fexd J V F : Z onto Y Z X F V
11 1 qtopval J V F V J qTop F = s 𝒫 F X | F -1 s X J
12 2 10 11 syl2anc J V F : Z onto Y Z X J qTop F = s 𝒫 F X | F -1 s X J
13 imassrn F X ran F
14 forn F : Z onto Y ran F = Y
15 14 3ad2ant2 J V F : Z onto Y Z X ran F = Y
16 13 15 sseqtrid J V F : Z onto Y Z X F X Y
17 foima F : Z onto Y F Z = Y
18 17 3ad2ant2 J V F : Z onto Y Z X F Z = Y
19 imass2 Z X F Z F X
20 8 19 syl J V F : Z onto Y Z X F Z F X
21 18 20 eqsstrrd J V F : Z onto Y Z X Y F X
22 16 21 eqssd J V F : Z onto Y Z X F X = Y
23 22 pweqd J V F : Z onto Y Z X 𝒫 F X = 𝒫 Y
24 cnvimass F -1 s dom F
25 24 4 fssdm J V F : Z onto Y Z X F -1 s Z
26 25 8 sstrd J V F : Z onto Y Z X F -1 s X
27 df-ss F -1 s X F -1 s X = F -1 s
28 26 27 sylib J V F : Z onto Y Z X F -1 s X = F -1 s
29 28 eleq1d J V F : Z onto Y Z X F -1 s X J F -1 s J
30 23 29 rabeqbidv J V F : Z onto Y Z X s 𝒫 F X | F -1 s X J = s 𝒫 Y | F -1 s J
31 12 30 eqtrd J V F : Z onto Y Z X J qTop F = s 𝒫 Y | F -1 s J