Metamath Proof Explorer


Theorem quad

Description: The quadratic equation. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses quad.a φ A
quad.z φ A 0
quad.b φ B
quad.c φ C
quad.x φ X
quad.d φ D = B 2 4 A C
Assertion quad φ A X 2 + B X + C = 0 X = - B + D 2 A X = - B - D 2 A

Proof

Step Hyp Ref Expression
1 quad.a φ A
2 quad.z φ A 0
3 quad.b φ B
4 quad.c φ C
5 quad.x φ X
6 quad.d φ D = B 2 4 A C
7 3 sqcld φ B 2
8 4cn 4
9 1 4 mulcld φ A C
10 mulcl 4 A C 4 A C
11 8 9 10 sylancr φ 4 A C
12 7 11 subcld φ B 2 4 A C
13 6 12 eqeltrd φ D
14 13 sqrtcld φ D
15 13 sqsqrtd φ D 2 = D
16 15 6 eqtrd φ D 2 = B 2 4 A C
17 1 2 3 4 5 14 16 quad2 φ A X 2 + B X + C = 0 X = - B + D 2 A X = - B - D 2 A