Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Solutions of quadratic, cubic, and quartic equations
quad
Next ⟩
1cubrlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
quad
Description:
The quadratic equation.
(Contributed by
Mario Carneiro
, 23-Apr-2015)
Ref
Expression
Hypotheses
quad.a
⊢
φ
→
A
∈
ℂ
quad.z
⊢
φ
→
A
≠
0
quad.b
⊢
φ
→
B
∈
ℂ
quad.c
⊢
φ
→
C
∈
ℂ
quad.x
⊢
φ
→
X
∈
ℂ
quad.d
⊢
φ
→
D
=
B
2
−
4
⁢
A
⁢
C
Assertion
quad
⊢
φ
→
A
⁢
X
2
+
B
⁢
X
+
C
=
0
↔
X
=
-
B
+
D
2
⁢
A
∨
X
=
-
B
-
D
2
⁢
A
Proof
Step
Hyp
Ref
Expression
1
quad.a
⊢
φ
→
A
∈
ℂ
2
quad.z
⊢
φ
→
A
≠
0
3
quad.b
⊢
φ
→
B
∈
ℂ
4
quad.c
⊢
φ
→
C
∈
ℂ
5
quad.x
⊢
φ
→
X
∈
ℂ
6
quad.d
⊢
φ
→
D
=
B
2
−
4
⁢
A
⁢
C
7
3
sqcld
⊢
φ
→
B
2
∈
ℂ
8
4cn
⊢
4
∈
ℂ
9
1
4
mulcld
⊢
φ
→
A
⁢
C
∈
ℂ
10
mulcl
⊢
4
∈
ℂ
∧
A
⁢
C
∈
ℂ
→
4
⁢
A
⁢
C
∈
ℂ
11
8
9
10
sylancr
⊢
φ
→
4
⁢
A
⁢
C
∈
ℂ
12
7
11
subcld
⊢
φ
→
B
2
−
4
⁢
A
⁢
C
∈
ℂ
13
6
12
eqeltrd
⊢
φ
→
D
∈
ℂ
14
13
sqrtcld
⊢
φ
→
D
∈
ℂ
15
13
sqsqrtd
⊢
φ
→
D
2
=
D
16
15
6
eqtrd
⊢
φ
→
D
2
=
B
2
−
4
⁢
A
⁢
C
17
1
2
3
4
5
14
16
quad2
⊢
φ
→
A
⁢
X
2
+
B
⁢
X
+
C
=
0
↔
X
=
-
B
+
D
2
⁢
A
∨
X
=
-
B
-
D
2
⁢
A