Step |
Hyp |
Ref |
Expression |
1 |
|
quad.a |
|
2 |
|
quad.z |
|
3 |
|
quad.b |
|
4 |
|
quad.c |
|
5 |
|
quad.x |
|
6 |
|
quad2.d |
|
7 |
|
quad2.2 |
|
8 |
|
2cn |
|
9 |
|
mulcl |
|
10 |
8 1 9
|
sylancr |
|
11 |
10 5
|
mulcld |
|
12 |
11 3
|
addcld |
|
13 |
12
|
sqcld |
|
14 |
6
|
sqcld |
|
15 |
13 14
|
subeq0ad |
|
16 |
5
|
sqcld |
|
17 |
1 16
|
mulcld |
|
18 |
3 5
|
mulcld |
|
19 |
18 4
|
addcld |
|
20 |
17 19
|
addcld |
|
21 |
|
0cnd |
|
22 |
|
4cn |
|
23 |
|
mulcl |
|
24 |
22 1 23
|
sylancr |
|
25 |
22
|
a1i |
|
26 |
|
4ne0 |
|
27 |
26
|
a1i |
|
28 |
25 1 27 2
|
mulne0d |
|
29 |
20 21 24 28
|
mulcand |
|
30 |
11
|
sqcld |
|
31 |
11 3
|
mulcld |
|
32 |
|
mulcl |
|
33 |
8 31 32
|
sylancr |
|
34 |
1 4
|
mulcld |
|
35 |
|
mulcl |
|
36 |
22 34 35
|
sylancr |
|
37 |
30 33 36
|
addassd |
|
38 |
3
|
sqcld |
|
39 |
30 33
|
addcld |
|
40 |
38 39 36
|
pnncand |
|
41 |
10 5
|
sqmuld |
|
42 |
|
sq2 |
|
43 |
42
|
a1i |
|
44 |
1
|
sqvald |
|
45 |
43 44
|
oveq12d |
|
46 |
|
sqmul |
|
47 |
8 1 46
|
sylancr |
|
48 |
25 1 1
|
mulassd |
|
49 |
45 47 48
|
3eqtr4d |
|
50 |
49
|
oveq1d |
|
51 |
24 1 16
|
mulassd |
|
52 |
41 50 51
|
3eqtrrd |
|
53 |
24 18 4
|
adddid |
|
54 |
|
2t2e4 |
|
55 |
54
|
oveq1i |
|
56 |
8
|
a1i |
|
57 |
56 56 1
|
mulassd |
|
58 |
55 57
|
eqtr3id |
|
59 |
58
|
oveq1d |
|
60 |
56 10 3
|
mulassd |
|
61 |
59 60
|
eqtrd |
|
62 |
61
|
oveq1d |
|
63 |
10 3
|
mulcld |
|
64 |
56 63 5
|
mulassd |
|
65 |
62 64
|
eqtrd |
|
66 |
24 3 5
|
mulassd |
|
67 |
10 3 5
|
mul32d |
|
68 |
67
|
oveq2d |
|
69 |
65 66 68
|
3eqtr3d |
|
70 |
25 1 4
|
mulassd |
|
71 |
69 70
|
oveq12d |
|
72 |
53 71
|
eqtrd |
|
73 |
52 72
|
oveq12d |
|
74 |
37 40 73
|
3eqtr4rd |
|
75 |
24 17 19
|
adddid |
|
76 |
|
binom2 |
|
77 |
11 3 76
|
syl2anc |
|
78 |
39 38 77
|
comraddd |
|
79 |
78 7
|
oveq12d |
|
80 |
74 75 79
|
3eqtr4d |
|
81 |
24
|
mul01d |
|
82 |
80 81
|
eqeq12d |
|
83 |
29 82
|
bitr3d |
|
84 |
11 3
|
subnegd |
|
85 |
84
|
oveq1d |
|
86 |
85
|
eqeq1d |
|
87 |
15 83 86
|
3bitr4d |
|
88 |
3
|
negcld |
|
89 |
11 88
|
subcld |
|
90 |
|
sqeqor |
|
91 |
89 6 90
|
syl2anc |
|
92 |
11 88 6
|
subaddd |
|
93 |
88 6
|
addcld |
|
94 |
|
2ne0 |
|
95 |
94
|
a1i |
|
96 |
56 1 95 2
|
mulne0d |
|
97 |
93 10 5 96
|
divmuld |
|
98 |
|
eqcom |
|
99 |
|
eqcom |
|
100 |
97 98 99
|
3bitr4g |
|
101 |
92 100
|
bitr4d |
|
102 |
88 6
|
negsubd |
|
103 |
102
|
eqeq1d |
|
104 |
6
|
negcld |
|
105 |
11 88 104
|
subaddd |
|
106 |
88 6
|
subcld |
|
107 |
106 10 5 96
|
divmuld |
|
108 |
|
eqcom |
|
109 |
|
eqcom |
|
110 |
107 108 109
|
3bitr4g |
|
111 |
103 105 110
|
3bitr4d |
|
112 |
101 111
|
orbi12d |
|
113 |
87 91 112
|
3bitrd |
|