Metamath Proof Explorer


Theorem quart1

Description: Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses quart1.a φ A
quart1.b φ B
quart1.c φ C
quart1.d φ D
quart1.p φ P = B 3 8 A 2
quart1.q φ Q = C - A B 2 + A 3 8
quart1.r φ R = D C A 4 + A 2 B 16 - 3 256 A 4
quart1.x φ X
quart1.y φ Y = X + A 4
Assertion quart1 φ X 4 + A X 3 + B X 2 + C X + D = Y 4 + P Y 2 + Q Y + R

Proof

Step Hyp Ref Expression
1 quart1.a φ A
2 quart1.b φ B
3 quart1.c φ C
4 quart1.d φ D
5 quart1.p φ P = B 3 8 A 2
6 quart1.q φ Q = C - A B 2 + A 3 8
7 quart1.r φ R = D C A 4 + A 2 B 16 - 3 256 A 4
8 quart1.x φ X
9 quart1.y φ Y = X + A 4
10 9 oveq1d φ Y 4 = X + A 4 4
11 4cn 4
12 11 a1i φ 4
13 4ne0 4 0
14 13 a1i φ 4 0
15 1 12 14 divcld φ A 4
16 binom4 X A 4 X + A 4 4 = X 4 + 4 X 3 A 4 + 6 X 2 A 4 2 + 4 X A 4 3 + A 4 4
17 8 15 16 syl2anc φ X + A 4 4 = X 4 + 4 X 3 A 4 + 6 X 2 A 4 2 + 4 X A 4 3 + A 4 4
18 3nn0 3 0
19 expcl X 3 0 X 3
20 8 18 19 sylancl φ X 3
21 12 20 15 mul12d φ 4 X 3 A 4 = X 3 4 A 4
22 1 12 14 divcan2d φ 4 A 4 = A
23 22 oveq2d φ X 3 4 A 4 = X 3 A
24 20 1 mulcomd φ X 3 A = A X 3
25 21 23 24 3eqtrd φ 4 X 3 A 4 = A X 3
26 25 oveq2d φ X 4 + 4 X 3 A 4 = X 4 + A X 3
27 6nn 6
28 27 nncni 6
29 28 a1i φ 6
30 15 sqcld φ A 4 2
31 8 sqcld φ X 2
32 29 30 31 mulassd φ 6 A 4 2 X 2 = 6 A 4 2 X 2
33 3cn 3
34 2cn 2
35 3t2e6 3 2 = 6
36 33 34 35 mulcomli 2 3 = 6
37 8cn 8
38 8t2e16 8 2 = 16
39 37 34 38 mulcomli 2 8 = 16
40 36 39 oveq12i 2 3 2 8 = 6 16
41 8nn 8
42 41 nnne0i 8 0
43 37 42 pm3.2i 8 8 0
44 2cnne0 2 2 0
45 divcan5 3 8 8 0 2 2 0 2 3 2 8 = 3 8
46 33 43 44 45 mp3an 2 3 2 8 = 3 8
47 40 46 eqtr3i 6 16 = 3 8
48 47 oveq2i A 2 6 16 = A 2 3 8
49 1 sqcld φ A 2
50 1nn0 1 0
51 50 27 decnncl 16
52 51 nncni 16
53 52 a1i φ 16
54 51 nnne0i 16 0
55 54 a1i φ 16 0
56 49 29 53 55 div12d φ A 2 6 16 = 6 A 2 16
57 48 56 eqtr3id φ A 2 3 8 = 6 A 2 16
58 33 37 42 divcli 3 8
59 mulcom 3 8 A 2 3 8 A 2 = A 2 3 8
60 58 49 59 sylancr φ 3 8 A 2 = A 2 3 8
61 1 12 14 sqdivd φ A 4 2 = A 2 4 2
62 11 sqvali 4 2 = 4 4
63 4t4e16 4 4 = 16
64 62 63 eqtri 4 2 = 16
65 64 oveq2i A 2 4 2 = A 2 16
66 61 65 eqtrdi φ A 4 2 = A 2 16
67 66 oveq2d φ 6 A 4 2 = 6 A 2 16
68 57 60 67 3eqtr4d φ 3 8 A 2 = 6 A 4 2
69 68 oveq1d φ 3 8 A 2 X 2 = 6 A 4 2 X 2
70 31 30 mulcomd φ X 2 A 4 2 = A 4 2 X 2
71 70 oveq2d φ 6 X 2 A 4 2 = 6 A 4 2 X 2
72 32 69 71 3eqtr4rd φ 6 X 2 A 4 2 = 3 8 A 2 X 2
73 expcl A 4 3 0 A 4 3
74 15 18 73 sylancl φ A 4 3
75 12 8 74 mul12d φ 4 X A 4 3 = X 4 A 4 3
76 12 74 mulcld φ 4 A 4 3
77 8 76 mulcomd φ X 4 A 4 3 = 4 A 4 3 X
78 df-3 3 = 2 + 1
79 78 oveq2i 4 3 = 4 2 + 1
80 2nn0 2 0
81 expp1 4 2 0 4 2 + 1 = 4 2 4
82 11 80 81 mp2an 4 2 + 1 = 4 2 4
83 64 oveq1i 4 2 4 = 16 4
84 79 82 83 3eqtri 4 3 = 16 4
85 84 oveq2i A 3 4 3 = A 3 16 4
86 18 a1i φ 3 0
87 1 12 14 86 expdivd φ A 4 3 = A 3 4 3
88 expcl A 3 0 A 3
89 1 18 88 sylancl φ A 3
90 89 53 12 55 14 divdiv1d φ A 3 16 4 = A 3 16 4
91 85 87 90 3eqtr4a φ A 4 3 = A 3 16 4
92 91 oveq2d φ 4 A 4 3 = 4 A 3 16 4
93 38 oveq2i A 3 8 2 = A 3 16
94 37 a1i φ 8
95 34 a1i φ 2
96 42 a1i φ 8 0
97 2ne0 2 0
98 97 a1i φ 2 0
99 89 94 95 96 98 divdiv1d φ A 3 8 2 = A 3 8 2
100 89 53 55 divcld φ A 3 16
101 100 12 14 divcan2d φ 4 A 3 16 4 = A 3 16
102 93 99 101 3eqtr4a φ A 3 8 2 = 4 A 3 16 4
103 92 102 eqtr4d φ 4 A 4 3 = A 3 8 2
104 103 oveq1d φ 4 A 4 3 X = A 3 8 2 X
105 75 77 104 3eqtrd φ 4 X A 4 3 = A 3 8 2 X
106 4nn0 4 0
107 106 a1i φ 4 0
108 1 12 14 107 expdivd φ A 4 4 = A 4 4 4
109 expmul 2 2 0 4 0 2 2 4 = 2 2 4
110 34 80 106 109 mp3an 2 2 4 = 2 2 4
111 4t2e8 4 2 = 8
112 11 34 111 mulcomli 2 4 = 8
113 112 oveq2i 2 2 4 = 2 8
114 110 113 eqtr3i 2 2 4 = 2 8
115 sq2 2 2 = 4
116 115 oveq1i 2 2 4 = 4 4
117 114 116 eqtr3i 2 8 = 4 4
118 2exp8 2 8 = 256
119 117 118 eqtr3i 4 4 = 256
120 119 oveq2i A 4 4 4 = A 4 256
121 108 120 eqtrdi φ A 4 4 = A 4 256
122 105 121 oveq12d φ 4 X A 4 3 + A 4 4 = A 3 8 2 X + A 4 256
123 72 122 oveq12d φ 6 X 2 A 4 2 + 4 X A 4 3 + A 4 4 = 3 8 A 2 X 2 + A 3 8 2 X + A 4 256
124 26 123 oveq12d φ X 4 + 4 X 3 A 4 + 6 X 2 A 4 2 + 4 X A 4 3 + A 4 4 = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256
125 10 17 124 3eqtrd φ Y 4 = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256
126 125 oveq1d φ Y 4 + P Y 2 = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2
127 expcl X 4 0 X 4
128 8 106 127 sylancl φ X 4
129 1 20 mulcld φ A X 3
130 128 129 addcld φ X 4 + A X 3
131 mulcl 3 8 A 2 3 8 A 2
132 58 49 131 sylancr φ 3 8 A 2
133 132 31 mulcld φ 3 8 A 2 X 2
134 89 94 96 divcld φ A 3 8
135 134 halfcld φ A 3 8 2
136 135 8 mulcld φ A 3 8 2 X
137 expcl A 4 0 A 4
138 1 106 137 sylancl φ A 4
139 5nn0 5 0
140 80 139 deccl 25 0
141 140 27 decnncl 256
142 141 nncni 256
143 142 a1i φ 256
144 141 nnne0i 256 0
145 144 a1i φ 256 0
146 138 143 145 divcld φ A 4 256
147 136 146 addcld φ A 3 8 2 X + A 4 256
148 133 147 addcld φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256
149 1 2 3 4 5 6 7 quart1cl φ P Q R
150 149 simp1d φ P
151 8 15 addcld φ X + A 4
152 9 151 eqeltrd φ Y
153 152 sqcld φ Y 2
154 150 153 mulcld φ P Y 2
155 130 148 154 addassd φ X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2
156 126 155 eqtrd φ Y 4 + P Y 2 = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2
157 156 oveq1d φ Y 4 + P Y 2 + Q Y + R = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R
158 148 154 addcld φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2
159 149 simp2d φ Q
160 159 152 mulcld φ Q Y
161 149 simp3d φ R
162 160 161 addcld φ Q Y + R
163 130 158 162 addassd φ X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R = X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R
164 9 oveq1d φ Y 2 = X + A 4 2
165 binom2 X A 4 X + A 4 2 = X 2 + 2 X A 4 + A 4 2
166 8 15 165 syl2anc φ X + A 4 2 = X 2 + 2 X A 4 + A 4 2
167 8 15 mulcld φ X A 4
168 mulcl 2 X A 4 2 X A 4
169 34 167 168 sylancr φ 2 X A 4
170 31 169 30 addassd φ X 2 + 2 X A 4 + A 4 2 = X 2 + 2 X A 4 + A 4 2
171 164 166 170 3eqtrd φ Y 2 = X 2 + 2 X A 4 + A 4 2
172 171 oveq2d φ P Y 2 = P X 2 + 2 X A 4 + A 4 2
173 169 30 addcld φ 2 X A 4 + A 4 2
174 150 31 173 adddid φ P X 2 + 2 X A 4 + A 4 2 = P X 2 + P 2 X A 4 + A 4 2
175 172 174 eqtrd φ P Y 2 = P X 2 + P 2 X A 4 + A 4 2
176 175 oveq2d φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 = 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P X 2 + P 2 X A 4 + A 4 2
177 150 31 mulcld φ P X 2
178 150 173 mulcld φ P 2 X A 4 + A 4 2
179 133 147 177 178 add4d φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P X 2 + P 2 X A 4 + A 4 2 = 3 8 A 2 X 2 + P X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2
180 132 150 31 adddird φ 3 8 A 2 + P X 2 = 3 8 A 2 X 2 + P X 2
181 5 oveq2d φ 3 8 A 2 + P = 3 8 A 2 + B - 3 8 A 2
182 132 2 pncan3d φ 3 8 A 2 + B - 3 8 A 2 = B
183 181 182 eqtrd φ 3 8 A 2 + P = B
184 183 oveq1d φ 3 8 A 2 + P X 2 = B X 2
185 180 184 eqtr3d φ 3 8 A 2 X 2 + P X 2 = B X 2
186 185 oveq1d φ 3 8 A 2 X 2 + P X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 = B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2
187 176 179 186 3eqtrd φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 = B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2
188 187 oveq1d φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R = B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R
189 2 31 mulcld φ B X 2
190 147 178 addcld φ A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2
191 189 190 162 addassd φ B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R = B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R
192 1 2 mulcld φ A B
193 192 halfcld φ A B 2
194 193 134 subcld φ A B 2 A 3 8
195 194 8 mulcld φ A B 2 A 3 8 X
196 150 30 mulcld φ P A 4 2
197 146 196 addcld φ A 4 256 + P A 4 2
198 159 8 mulcld φ Q X
199 159 15 mulcld φ Q A 4
200 199 161 addcld φ Q A 4 + R
201 195 197 198 200 add4d φ A B 2 A 3 8 X + A 4 256 + P A 4 2 + Q X + Q A 4 + R = A B 2 A 3 8 X + Q X + A 4 256 + P A 4 2 + Q A 4 + R
202 150 169 30 adddid φ P 2 X A 4 + A 4 2 = P 2 X A 4 + P A 4 2
203 202 oveq2d φ A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 = A 3 8 2 X + A 4 256 + P 2 X A 4 + P A 4 2
204 150 169 mulcld φ P 2 X A 4
205 136 146 204 196 add4d φ A 3 8 2 X + A 4 256 + P 2 X A 4 + P A 4 2 = A 3 8 2 X + P 2 X A 4 + A 4 256 + P A 4 2
206 1 95 95 98 98 divdiv1d φ A 2 2 = A 2 2
207 2t2e4 2 2 = 4
208 207 oveq2i A 2 2 = A 4
209 206 208 eqtrdi φ A 2 2 = A 4
210 209 oveq2d φ 2 A 2 2 = 2 A 4
211 1 halfcld φ A 2
212 211 95 98 divcan2d φ 2 A 2 2 = A 2
213 210 212 eqtr3d φ 2 A 4 = A 2
214 213 oveq2d φ X 2 A 4 = X A 2
215 8 211 mulcomd φ X A 2 = A 2 X
216 214 215 eqtrd φ X 2 A 4 = A 2 X
217 216 oveq2d φ P X 2 A 4 = P A 2 X
218 95 8 15 mul12d φ 2 X A 4 = X 2 A 4
219 218 oveq2d φ P 2 X A 4 = P X 2 A 4
220 150 211 8 mulassd φ P A 2 X = P A 2 X
221 217 219 220 3eqtr4d φ P 2 X A 4 = P A 2 X
222 221 oveq2d φ A 3 8 2 X + P 2 X A 4 = A 3 8 2 X + P A 2 X
223 150 211 mulcld φ P A 2
224 135 223 8 adddird φ A 3 8 2 + P A 2 X = A 3 8 2 X + P A 2 X
225 5 oveq1d φ P A 2 = B 3 8 A 2 A 2
226 2 132 211 subdird φ B 3 8 A 2 A 2 = B A 2 3 8 A 2 A 2
227 2 1 95 98 divassd φ B A 2 = B A 2
228 2 1 mulcomd φ B A = A B
229 228 oveq1d φ B A 2 = A B 2
230 227 229 eqtr3d φ B A 2 = A B 2
231 78 oveq2i A 3 = A 2 + 1
232 expp1 A 2 0 A 2 + 1 = A 2 A
233 1 80 232 sylancl φ A 2 + 1 = A 2 A
234 231 233 syl5eq φ A 3 = A 2 A
235 234 oveq2d φ 3 8 A 3 = 3 8 A 2 A
236 33 a1i φ 3
237 236 89 94 96 div23d φ 3 A 3 8 = 3 8 A 3
238 58 a1i φ 3 8
239 238 49 1 mulassd φ 3 8 A 2 A = 3 8 A 2 A
240 235 237 239 3eqtr4rd φ 3 8 A 2 A = 3 A 3 8
241 236 89 94 96 divassd φ 3 A 3 8 = 3 A 3 8
242 240 241 eqtrd φ 3 8 A 2 A = 3 A 3 8
243 242 oveq1d φ 3 8 A 2 A 2 = 3 A 3 8 2
244 132 1 95 98 divassd φ 3 8 A 2 A 2 = 3 8 A 2 A 2
245 236 134 95 98 divassd φ 3 A 3 8 2 = 3 A 3 8 2
246 243 244 245 3eqtr3d φ 3 8 A 2 A 2 = 3 A 3 8 2
247 230 246 oveq12d φ B A 2 3 8 A 2 A 2 = A B 2 3 A 3 8 2
248 225 226 247 3eqtrd φ P A 2 = A B 2 3 A 3 8 2
249 248 oveq2d φ A 3 8 2 + P A 2 = A 3 8 2 + A B 2 - 3 A 3 8 2
250 mulcl 3 A 3 8 2 3 A 3 8 2
251 33 135 250 sylancr φ 3 A 3 8 2
252 135 193 251 addsub12d φ A 3 8 2 + A B 2 - 3 A 3 8 2 = A B 2 + A 3 8 2 - 3 A 3 8 2
253 193 251 135 subsub2d φ A B 2 3 A 3 8 2 A 3 8 2 = A B 2 + A 3 8 2 - 3 A 3 8 2
254 135 mulid2d φ 1 A 3 8 2 = A 3 8 2
255 254 oveq2d φ 3 A 3 8 2 1 A 3 8 2 = 3 A 3 8 2 A 3 8 2
256 3m1e2 3 1 = 2
257 256 oveq1i 3 1 A 3 8 2 = 2 A 3 8 2
258 1cnd φ 1
259 236 258 135 subdird φ 3 1 A 3 8 2 = 3 A 3 8 2 1 A 3 8 2
260 134 95 98 divcan2d φ 2 A 3 8 2 = A 3 8
261 257 259 260 3eqtr3a φ 3 A 3 8 2 1 A 3 8 2 = A 3 8
262 255 261 eqtr3d φ 3 A 3 8 2 A 3 8 2 = A 3 8
263 262 oveq2d φ A B 2 3 A 3 8 2 A 3 8 2 = A B 2 A 3 8
264 252 253 263 3eqtr2d φ A 3 8 2 + A B 2 - 3 A 3 8 2 = A B 2 A 3 8
265 249 264 eqtrd φ A 3 8 2 + P A 2 = A B 2 A 3 8
266 265 oveq1d φ A 3 8 2 + P A 2 X = A B 2 A 3 8 X
267 222 224 266 3eqtr2d φ A 3 8 2 X + P 2 X A 4 = A B 2 A 3 8 X
268 267 oveq1d φ A 3 8 2 X + P 2 X A 4 + A 4 256 + P A 4 2 = A B 2 A 3 8 X + A 4 256 + P A 4 2
269 203 205 268 3eqtrd φ A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 = A B 2 A 3 8 X + A 4 256 + P A 4 2
270 9 oveq2d φ Q Y = Q X + A 4
271 159 8 15 adddid φ Q X + A 4 = Q X + Q A 4
272 270 271 eqtrd φ Q Y = Q X + Q A 4
273 272 oveq1d φ Q Y + R = Q X + Q A 4 + R
274 198 199 161 addassd φ Q X + Q A 4 + R = Q X + Q A 4 + R
275 273 274 eqtrd φ Q Y + R = Q X + Q A 4 + R
276 269 275 oveq12d φ A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R = A B 2 A 3 8 X + A 4 256 + P A 4 2 + Q X + Q A 4 + R
277 194 159 addcomd φ A B 2 - A 3 8 + Q = Q + A B 2 - A 3 8
278 6 oveq1d φ Q + A B 2 - A 3 8 = C A B 2 + A 3 8 + A B 2 A 3 8
279 3 193 subcld φ C A B 2
280 279 134 193 ppncand φ C A B 2 + A 3 8 + A B 2 A 3 8 = C - A B 2 + A B 2
281 3 193 npcand φ C - A B 2 + A B 2 = C
282 280 281 eqtrd φ C A B 2 + A 3 8 + A B 2 A 3 8 = C
283 277 278 282 3eqtrd φ A B 2 - A 3 8 + Q = C
284 283 oveq1d φ A B 2 - A 3 8 + Q X = C X
285 194 159 8 adddird φ A B 2 - A 3 8 + Q X = A B 2 A 3 8 X + Q X
286 284 285 eqtr3d φ C X = A B 2 A 3 8 X + Q X
287 1 2 3 4 5 6 7 8 9 quart1lem φ D = A 4 256 + P A 4 2 + Q A 4 + R
288 286 287 oveq12d φ C X + D = A B 2 A 3 8 X + Q X + A 4 256 + P A 4 2 + Q A 4 + R
289 201 276 288 3eqtr4d φ A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R = C X + D
290 289 oveq2d φ B X 2 + A 3 8 2 X + A 4 256 + P 2 X A 4 + A 4 2 + Q Y + R = B X 2 + C X + D
291 188 191 290 3eqtrd φ 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R = B X 2 + C X + D
292 291 oveq2d φ X 4 + A X 3 + 3 8 A 2 X 2 + A 3 8 2 X + A 4 256 + P Y 2 + Q Y + R = X 4 + A X 3 + B X 2 + C X + D
293 157 163 292 3eqtrrd φ X 4 + A X 3 + B X 2 + C X + D = Y 4 + P Y 2 + Q Y + R