Step |
Hyp |
Ref |
Expression |
1 |
|
quorem.1 |
|
2 |
|
quorem.2 |
|
3 |
|
zre |
|
4 |
3
|
adantr |
|
5 |
|
nnre |
|
6 |
5
|
adantl |
|
7 |
|
nnne0 |
|
8 |
7
|
adantl |
|
9 |
4 6 8
|
redivcld |
|
10 |
9
|
flcld |
|
11 |
1 10
|
eqeltrid |
|
12 |
11
|
zcnd |
|
13 |
|
nncn |
|
14 |
13
|
adantl |
|
15 |
12 14 8
|
divcan3d |
|
16 |
|
flle |
|
17 |
9 16
|
syl |
|
18 |
1 17
|
eqbrtrid |
|
19 |
15 18
|
eqbrtrd |
|
20 |
|
nnz |
|
21 |
20
|
adantl |
|
22 |
21 11
|
zmulcld |
|
23 |
22
|
zred |
|
24 |
|
nngt0 |
|
25 |
24
|
adantl |
|
26 |
|
lediv1 |
|
27 |
23 4 6 25 26
|
syl112anc |
|
28 |
19 27
|
mpbird |
|
29 |
|
simpl |
|
30 |
|
znn0sub |
|
31 |
22 29 30
|
syl2anc |
|
32 |
28 31
|
mpbid |
|
33 |
2 32
|
eqeltrid |
|
34 |
1
|
oveq2i |
|
35 |
|
fraclt1 |
|
36 |
9 35
|
syl |
|
37 |
34 36
|
eqbrtrid |
|
38 |
2
|
oveq1i |
|
39 |
|
zcn |
|
40 |
39
|
adantr |
|
41 |
22
|
zcnd |
|
42 |
13 7
|
jca |
|
43 |
42
|
adantl |
|
44 |
|
divsubdir |
|
45 |
40 41 43 44
|
syl3anc |
|
46 |
15
|
oveq2d |
|
47 |
45 46
|
eqtrd |
|
48 |
38 47
|
eqtrid |
|
49 |
13 7
|
dividd |
|
50 |
49
|
adantl |
|
51 |
37 48 50
|
3brtr4d |
|
52 |
33
|
nn0red |
|
53 |
|
ltdiv1 |
|
54 |
52 6 6 25 53
|
syl112anc |
|
55 |
51 54
|
mpbird |
|
56 |
2
|
oveq2i |
|
57 |
41 40
|
pncan3d |
|
58 |
56 57
|
eqtr2id |
|
59 |
55 58
|
jca |
|
60 |
11 33 59
|
jca31 |
|