Metamath Proof Explorer


Theorem quotcl

Description: The quotient of two polynomials in a field S is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φ x S y S x + y S
plydiv.tm φ x S y S x y S
plydiv.rc φ x S x 0 1 x S
plydiv.m1 φ 1 S
plydiv.f φ F Poly S
plydiv.g φ G Poly S
plydiv.z φ G 0 𝑝
Assertion quotcl φ F quot G Poly S

Proof

Step Hyp Ref Expression
1 plydiv.pl φ x S y S x + y S
2 plydiv.tm φ x S y S x y S
3 plydiv.rc φ x S x 0 1 x S
4 plydiv.m1 φ 1 S
5 plydiv.f φ F Poly S
6 plydiv.g φ G Poly S
7 plydiv.z φ G 0 𝑝
8 eqid F f G × f F quot G = F f G × f F quot G
9 1 2 3 4 5 6 7 8 quotlem φ F quot G Poly S F f G × f F quot G = 0 𝑝 deg F f G × f F quot G < deg G
10 9 simpld φ F quot G Poly S