Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
The division algorithm for polynomials
quotcl2
Next ⟩
quotdgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
quotcl2
Description:
Closure of the quotient function.
(Contributed by
Mario Carneiro
, 26-Jul-2014)
Ref
Expression
Assertion
quotcl2
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
F
quot
G
∈
Poly
⁡
ℂ
Proof
Step
Hyp
Ref
Expression
1
addcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
+
y
∈
ℂ
2
1
adantl
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
+
y
∈
ℂ
3
mulcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
4
3
adantl
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
5
reccl
⊢
x
∈
ℂ
∧
x
≠
0
→
1
x
∈
ℂ
6
5
adantl
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
∧
x
∈
ℂ
∧
x
≠
0
→
1
x
∈
ℂ
7
neg1cn
⊢
−
1
∈
ℂ
8
7
a1i
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
−
1
∈
ℂ
9
plyssc
⊢
Poly
⁡
S
⊆
Poly
⁡
ℂ
10
simp1
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
F
∈
Poly
⁡
S
11
9
10
sselid
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
F
∈
Poly
⁡
ℂ
12
simp2
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
G
∈
Poly
⁡
S
13
9
12
sselid
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
G
∈
Poly
⁡
ℂ
14
simp3
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
G
≠
0
𝑝
15
2
4
6
8
11
13
14
quotcl
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
G
≠
0
𝑝
→
F
quot
G
∈
Poly
⁡
ℂ