Metamath Proof Explorer


Theorem quotcl2

Description: Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion quotcl2 F Poly S G Poly S G 0 𝑝 F quot G Poly

Proof

Step Hyp Ref Expression
1 addcl x y x + y
2 1 adantl F Poly S G Poly S G 0 𝑝 x y x + y
3 mulcl x y x y
4 3 adantl F Poly S G Poly S G 0 𝑝 x y x y
5 reccl x x 0 1 x
6 5 adantl F Poly S G Poly S G 0 𝑝 x x 0 1 x
7 neg1cn 1
8 7 a1i F Poly S G Poly S G 0 𝑝 1
9 plyssc Poly S Poly
10 simp1 F Poly S G Poly S G 0 𝑝 F Poly S
11 9 10 sselid F Poly S G Poly S G 0 𝑝 F Poly
12 simp2 F Poly S G Poly S G 0 𝑝 G Poly S
13 9 12 sselid F Poly S G Poly S G 0 𝑝 G Poly
14 simp3 F Poly S G Poly S G 0 𝑝 G 0 𝑝
15 2 4 6 8 11 13 14 quotcl F Poly S G Poly S G 0 𝑝 F quot G Poly