Metamath Proof Explorer


Theorem quotdgr

Description: Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis quotdgr.1 R = F f G × f F quot G
Assertion quotdgr F Poly S G Poly S G 0 𝑝 R = 0 𝑝 deg R < deg G

Proof

Step Hyp Ref Expression
1 quotdgr.1 R = F f G × f F quot G
2 addcl x y x + y
3 2 adantl F Poly S G Poly S G 0 𝑝 x y x + y
4 mulcl x y x y
5 4 adantl F Poly S G Poly S G 0 𝑝 x y x y
6 reccl x x 0 1 x
7 6 adantl F Poly S G Poly S G 0 𝑝 x x 0 1 x
8 neg1cn 1
9 8 a1i F Poly S G Poly S G 0 𝑝 1
10 plyssc Poly S Poly
11 simp1 F Poly S G Poly S G 0 𝑝 F Poly S
12 10 11 sselid F Poly S G Poly S G 0 𝑝 F Poly
13 simp2 F Poly S G Poly S G 0 𝑝 G Poly S
14 10 13 sselid F Poly S G Poly S G 0 𝑝 G Poly
15 simp3 F Poly S G Poly S G 0 𝑝 G 0 𝑝
16 3 5 7 9 12 14 15 1 quotlem F Poly S G Poly S G 0 𝑝 F quot G Poly R = 0 𝑝 deg R < deg G
17 16 simprd F Poly S G Poly S G 0 𝑝 R = 0 𝑝 deg R < deg G