Metamath Proof Explorer


Theorem quotval

Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypothesis quotval.1 R = F f G × f q
Assertion quotval F Poly S G Poly S G 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G

Proof

Step Hyp Ref Expression
1 quotval.1 R = F f G × f q
2 plyssc Poly S Poly
3 2 sseli F Poly S F Poly
4 2 sseli G Poly S G Poly
5 eldifsn G Poly 0 𝑝 G Poly G 0 𝑝
6 oveq1 g = G g × f q = G × f q
7 oveq12 f = F g × f q = G × f q f f g × f q = F f G × f q
8 6 7 sylan2 f = F g = G f f g × f q = F f G × f q
9 8 1 eqtr4di f = F g = G f f g × f q = R
10 9 sbceq1d f = F g = G [˙f f g × f q / r]˙ r = 0 𝑝 deg r < deg g [˙R / r]˙ r = 0 𝑝 deg r < deg g
11 1 ovexi R V
12 eqeq1 r = R r = 0 𝑝 R = 0 𝑝
13 fveq2 r = R deg r = deg R
14 13 breq1d r = R deg r < deg g deg R < deg g
15 12 14 orbi12d r = R r = 0 𝑝 deg r < deg g R = 0 𝑝 deg R < deg g
16 11 15 sbcie [˙R / r]˙ r = 0 𝑝 deg r < deg g R = 0 𝑝 deg R < deg g
17 simpr f = F g = G g = G
18 17 fveq2d f = F g = G deg g = deg G
19 18 breq2d f = F g = G deg R < deg g deg R < deg G
20 19 orbi2d f = F g = G R = 0 𝑝 deg R < deg g R = 0 𝑝 deg R < deg G
21 16 20 syl5bb f = F g = G [˙R / r]˙ r = 0 𝑝 deg r < deg g R = 0 𝑝 deg R < deg G
22 10 21 bitrd f = F g = G [˙f f g × f q / r]˙ r = 0 𝑝 deg r < deg g R = 0 𝑝 deg R < deg G
23 22 riotabidv f = F g = G ι q Poly | [˙f f g × f q / r]˙ r = 0 𝑝 deg r < deg g = ι q Poly | R = 0 𝑝 deg R < deg G
24 df-quot quot = f Poly , g Poly 0 𝑝 ι q Poly | [˙f f g × f q / r]˙ r = 0 𝑝 deg r < deg g
25 riotaex ι q Poly | R = 0 𝑝 deg R < deg G V
26 23 24 25 ovmpoa F Poly G Poly 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G
27 5 26 sylan2br F Poly G Poly G 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G
28 27 3impb F Poly G Poly G 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G
29 4 28 syl3an2 F Poly G Poly S G 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G
30 3 29 syl3an1 F Poly S G Poly S G 0 𝑝 F quot G = ι q Poly | R = 0 𝑝 deg R < deg G