Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
The quotient map
qus0g
Next ⟩
qusima
Metamath Proof Explorer
Ascii
Unicode
Theorem
qus0g
Description:
The identity element of a quotient group.
(Contributed by
Thierry Arnoux
, 13-Mar-2025)
Ref
Expression
Hypothesis
qus0g.1
⊢
Q
=
G
/
𝑠
G
~
QG
N
Assertion
qus0g
⊢
N
∈
NrmSGrp
⁡
G
→
0
Q
=
N
Proof
Step
Hyp
Ref
Expression
1
qus0g.1
⊢
Q
=
G
/
𝑠
G
~
QG
N
2
eqid
⊢
Base
G
=
Base
G
3
eqid
⊢
LSSum
⁡
G
=
LSSum
⁡
G
4
nsgsubg
⊢
N
∈
NrmSGrp
⁡
G
→
N
∈
SubGrp
⁡
G
5
subgrcl
⊢
N
∈
SubGrp
⁡
G
→
G
∈
Grp
6
eqid
⊢
0
G
=
0
G
7
2
6
grpidcl
⊢
G
∈
Grp
→
0
G
∈
Base
G
8
4
5
7
3syl
⊢
N
∈
NrmSGrp
⁡
G
→
0
G
∈
Base
G
9
2
3
4
8
quslsm
⊢
N
∈
NrmSGrp
⁡
G
→
0
G
G
~
QG
N
=
0
G
LSSum
⁡
G
N
10
1
6
qus0
⊢
N
∈
NrmSGrp
⁡
G
→
0
G
G
~
QG
N
=
0
Q
11
6
3
lsm02
⊢
N
∈
SubGrp
⁡
G
→
0
G
LSSum
⁡
G
N
=
N
12
4
11
syl
⊢
N
∈
NrmSGrp
⁡
G
→
0
G
LSSum
⁡
G
N
=
N
13
9
10
12
3eqtr3d
⊢
N
∈
NrmSGrp
⁡
G
→
0
Q
=
N