Metamath Proof Explorer


Theorem qus0g

Description: The identity element of a quotient group. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypothesis qus0g.1 Q = G / 𝑠 G ~ QG N
Assertion qus0g N NrmSGrp G 0 Q = N

Proof

Step Hyp Ref Expression
1 qus0g.1 Q = G / 𝑠 G ~ QG N
2 eqid Base G = Base G
3 eqid LSSum G = LSSum G
4 nsgsubg N NrmSGrp G N SubGrp G
5 subgrcl N SubGrp G G Grp
6 eqid 0 G = 0 G
7 2 6 grpidcl G Grp 0 G Base G
8 4 5 7 3syl N NrmSGrp G 0 G Base G
9 2 3 4 8 quslsm N NrmSGrp G 0 G G ~ QG N = 0 G LSSum G N
10 1 6 qus0 N NrmSGrp G 0 G G ~ QG N = 0 Q
11 6 3 lsm02 N SubGrp G 0 G LSSum G N = N
12 4 11 syl N NrmSGrp G 0 G LSSum G N = N
13 9 10 12 3eqtr3d N NrmSGrp G 0 Q = N