Step |
Hyp |
Ref |
Expression |
1 |
|
qus0subg.0 |
|
2 |
|
qus0subg.s |
|
3 |
|
qus0subg.e |
|
4 |
|
qus0subg.u |
|
5 |
|
qus0subg.b |
|
6 |
4
|
a1i |
|
7 |
5
|
a1i |
|
8 |
1
|
0subg |
|
9 |
2 8
|
eqeltrid |
|
10 |
5 3
|
eqger |
|
11 |
9 10
|
syl |
|
12 |
|
id |
|
13 |
1
|
0nsg |
|
14 |
2 13
|
eqeltrid |
|
15 |
|
eqid |
|
16 |
5 3 15
|
eqgcpbl |
|
17 |
14 16
|
syl |
|
18 |
5 15
|
grpcl |
|
19 |
18
|
3expb |
|
20 |
|
eqid |
|
21 |
6 7 11 12 17 19 15 20
|
qusaddval |
|
22 |
21
|
3expb |
|
23 |
1 2 5 3
|
eqg0subgecsn |
|
24 |
23
|
adantrr |
|
25 |
1 2 5 3
|
eqg0subgecsn |
|
26 |
25
|
adantrl |
|
27 |
24 26
|
oveq12d |
|
28 |
5 15
|
grpcl |
|
29 |
28
|
3expb |
|
30 |
1 2 5 3
|
eqg0subgecsn |
|
31 |
29 30
|
syldan |
|
32 |
22 27 31
|
3eqtr3d |
|
33 |
32
|
ralrimivva |
|