Metamath Proof Explorer


Theorem qus0subgadd

Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses qus0subg.0 0 ˙ = 0 G
qus0subg.s S = 0 ˙
qus0subg.e ˙ = G ~ QG S
qus0subg.u U = G / 𝑠 ˙
qus0subg.b B = Base G
Assertion qus0subgadd G Grp a B b B a + U b = a + G b

Proof

Step Hyp Ref Expression
1 qus0subg.0 0 ˙ = 0 G
2 qus0subg.s S = 0 ˙
3 qus0subg.e ˙ = G ~ QG S
4 qus0subg.u U = G / 𝑠 ˙
5 qus0subg.b B = Base G
6 4 a1i G Grp U = G / 𝑠 ˙
7 5 a1i G Grp B = Base G
8 1 0subg G Grp 0 ˙ SubGrp G
9 2 8 eqeltrid G Grp S SubGrp G
10 5 3 eqger S SubGrp G ˙ Er B
11 9 10 syl G Grp ˙ Er B
12 id G Grp G Grp
13 1 0nsg G Grp 0 ˙ NrmSGrp G
14 2 13 eqeltrid G Grp S NrmSGrp G
15 eqid + G = + G
16 5 3 15 eqgcpbl S NrmSGrp G x ˙ p y ˙ q x + G y ˙ p + G q
17 14 16 syl G Grp x ˙ p y ˙ q x + G y ˙ p + G q
18 5 15 grpcl G Grp p B q B p + G q B
19 18 3expb G Grp p B q B p + G q B
20 eqid + U = + U
21 6 7 11 12 17 19 15 20 qusaddval G Grp a B b B a ˙ + U b ˙ = a + G b ˙
22 21 3expb G Grp a B b B a ˙ + U b ˙ = a + G b ˙
23 1 2 5 3 eqg0subgecsn G Grp a B a ˙ = a
24 23 adantrr G Grp a B b B a ˙ = a
25 1 2 5 3 eqg0subgecsn G Grp b B b ˙ = b
26 25 adantrl G Grp a B b B b ˙ = b
27 24 26 oveq12d G Grp a B b B a ˙ + U b ˙ = a + U b
28 5 15 grpcl G Grp a B b B a + G b B
29 28 3expb G Grp a B b B a + G b B
30 1 2 5 3 eqg0subgecsn G Grp a + G b B a + G b ˙ = a + G b
31 29 30 syldan G Grp a B b B a + G b ˙ = a + G b
32 22 27 31 3eqtr3d G Grp a B b B a + U b = a + G b
33 32 ralrimivva G Grp a B b B a + U b = a + G b