| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qus0subg.0 |
|
| 2 |
|
qus0subg.s |
|
| 3 |
|
qus0subg.e |
|
| 4 |
|
qus0subg.u |
|
| 5 |
|
qus0subg.b |
|
| 6 |
4
|
a1i |
|
| 7 |
5
|
a1i |
|
| 8 |
1
|
0subg |
|
| 9 |
2 8
|
eqeltrid |
|
| 10 |
5 3
|
eqger |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
id |
|
| 13 |
1
|
0nsg |
|
| 14 |
2 13
|
eqeltrid |
|
| 15 |
|
eqid |
|
| 16 |
5 3 15
|
eqgcpbl |
|
| 17 |
14 16
|
syl |
|
| 18 |
5 15
|
grpcl |
|
| 19 |
18
|
3expb |
|
| 20 |
|
eqid |
|
| 21 |
6 7 11 12 17 19 15 20
|
qusaddval |
|
| 22 |
21
|
3expb |
|
| 23 |
1 2 5 3
|
eqg0subgecsn |
|
| 24 |
23
|
adantrr |
|
| 25 |
1 2 5 3
|
eqg0subgecsn |
|
| 26 |
25
|
adantrl |
|
| 27 |
24 26
|
oveq12d |
|
| 28 |
5 15
|
grpcl |
|
| 29 |
28
|
3expb |
|
| 30 |
1 2 5 3
|
eqg0subgecsn |
|
| 31 |
29 30
|
syldan |
|
| 32 |
22 27 31
|
3eqtr3d |
|
| 33 |
32
|
ralrimivva |
|