Metamath Proof Explorer


Theorem qus0subgbas

Description: The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses qus0subg.0 0 ˙ = 0 G
qus0subg.s S = 0 ˙
qus0subg.e ˙ = G ~ QG S
qus0subg.u U = G / 𝑠 ˙
qus0subg.b B = Base G
Assertion qus0subgbas G Grp Base U = u | x B u = x

Proof

Step Hyp Ref Expression
1 qus0subg.0 0 ˙ = 0 G
2 qus0subg.s S = 0 ˙
3 qus0subg.e ˙ = G ~ QG S
4 qus0subg.u U = G / 𝑠 ˙
5 qus0subg.b B = Base G
6 df-qs B / ˙ = u | x B u = x ˙
7 4 a1i G Grp U = G / 𝑠 ˙
8 5 a1i G Grp B = Base G
9 3 ovexi ˙ V
10 9 a1i G Grp ˙ V
11 id G Grp G Grp
12 7 8 10 11 qusbas G Grp B / ˙ = Base U
13 1 2 5 3 eqg0subgecsn G Grp x B x ˙ = x
14 13 eqeq2d G Grp x B u = x ˙ u = x
15 14 rexbidva G Grp x B u = x ˙ x B u = x
16 15 abbidv G Grp u | x B u = x ˙ = u | x B u = x
17 6 12 16 3eqtr3a G Grp Base U = u | x B u = x