Metamath Proof Explorer


Theorem qus2idrng

Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring ( qusring analog). (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses qus2idrng.u U = R / 𝑠 R ~ QG S
qus2idrng.i I = 2Ideal R
Assertion qus2idrng R Rng S I S SubGrp R U Rng

Proof

Step Hyp Ref Expression
1 qus2idrng.u U = R / 𝑠 R ~ QG S
2 qus2idrng.i I = 2Ideal R
3 1 a1i R Rng S I S SubGrp R U = R / 𝑠 R ~ QG S
4 eqidd R Rng S I S SubGrp R Base R = Base R
5 eqid + R = + R
6 eqid R = R
7 simp3 R Rng S I S SubGrp R S SubGrp R
8 eqid Base R = Base R
9 eqid R ~ QG S = R ~ QG S
10 8 9 eqger S SubGrp R R ~ QG S Er Base R
11 7 10 syl R Rng S I S SubGrp R R ~ QG S Er Base R
12 rngabl R Rng R Abel
13 12 3ad2ant1 R Rng S I S SubGrp R R Abel
14 ablnsg R Abel NrmSGrp R = SubGrp R
15 13 14 syl R Rng S I S SubGrp R NrmSGrp R = SubGrp R
16 7 15 eleqtrrd R Rng S I S SubGrp R S NrmSGrp R
17 8 9 5 eqgcpbl S NrmSGrp R a R ~ QG S c b R ~ QG S d a + R b R ~ QG S c + R d
18 16 17 syl R Rng S I S SubGrp R a R ~ QG S c b R ~ QG S d a + R b R ~ QG S c + R d
19 8 9 2 6 2idlcpblrng R Rng S I S SubGrp R a R ~ QG S c b R ~ QG S d a R b R ~ QG S c R d
20 simp1 R Rng S I S SubGrp R R Rng
21 3 4 5 6 11 18 19 20 qusrng R Rng S I S SubGrp R U Rng