Metamath Proof Explorer


Theorem qusadd

Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H = G / 𝑠 G ~ QG S
qusadd.v V = Base G
qusadd.p + ˙ = + G
qusadd.a ˙ = + H
Assertion qusadd S NrmSGrp G X V Y V X G ~ QG S ˙ Y G ~ QG S = X + ˙ Y G ~ QG S

Proof

Step Hyp Ref Expression
1 qusgrp.h H = G / 𝑠 G ~ QG S
2 qusadd.v V = Base G
3 qusadd.p + ˙ = + G
4 qusadd.a ˙ = + H
5 1 a1i S NrmSGrp G H = G / 𝑠 G ~ QG S
6 2 a1i S NrmSGrp G V = Base G
7 nsgsubg S NrmSGrp G S SubGrp G
8 eqid G ~ QG S = G ~ QG S
9 2 8 eqger S SubGrp G G ~ QG S Er V
10 7 9 syl S NrmSGrp G G ~ QG S Er V
11 subgrcl S SubGrp G G Grp
12 7 11 syl S NrmSGrp G G Grp
13 2 8 3 eqgcpbl S NrmSGrp G a G ~ QG S p b G ~ QG S q a + ˙ b G ~ QG S p + ˙ q
14 2 3 grpcl G Grp p V q V p + ˙ q V
15 14 3expb G Grp p V q V p + ˙ q V
16 12 15 sylan S NrmSGrp G p V q V p + ˙ q V
17 5 6 10 12 13 16 3 4 qusaddval S NrmSGrp G X V Y V X G ~ QG S ˙ Y G ~ QG S = X + ˙ Y G ~ QG S