Metamath Proof Explorer


Theorem qusbas

Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusbas.u φ U = R / 𝑠 ˙
qusbas.v φ V = Base R
qusbas.e φ ˙ W
qusbas.r φ R Z
Assertion qusbas φ V / ˙ = Base U

Proof

Step Hyp Ref Expression
1 qusbas.u φ U = R / 𝑠 ˙
2 qusbas.v φ V = Base R
3 qusbas.e φ ˙ W
4 qusbas.r φ R Z
5 eqid x V x ˙ = x V x ˙
6 1 2 5 3 4 qusval φ U = x V x ˙ 𝑠 R
7 1 2 5 3 4 quslem φ x V x ˙ : V onto V / ˙
8 6 2 7 4 imasbas φ V / ˙ = Base U