Metamath Proof Explorer


Theorem qusbas2

Description: Alternate definition of the group quotient set, as the set of all cosets of the form ( { x } .(+) N ) . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses qusbas2.1 B = Base G
qusbas2.2 ˙ = LSSum G
qusbas2.3 φ x B N SubGrp G
Assertion qusbas2 φ B / G ~ QG N = ran x B x ˙ N

Proof

Step Hyp Ref Expression
1 qusbas2.1 B = Base G
2 qusbas2.2 ˙ = LSSum G
3 qusbas2.3 φ x B N SubGrp G
4 df-qs B / G ~ QG N = y | x B y = x G ~ QG N
5 eqid x B x G ~ QG N = x B x G ~ QG N
6 5 rnmpt ran x B x G ~ QG N = y | x B y = x G ~ QG N
7 4 6 eqtr4i B / G ~ QG N = ran x B x G ~ QG N
8 simpr φ x B x B
9 1 2 3 8 quslsm φ x B x G ~ QG N = x ˙ N
10 9 mpteq2dva φ x B x G ~ QG N = x B x ˙ N
11 10 rneqd φ ran x B x G ~ QG N = ran x B x ˙ N
12 7 11 eqtrid φ B / G ~ QG N = ran x B x ˙ N