Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015) (Proof shortened by AV, 3-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | quscrng.u | |
|
quscrng.i | |
||
Assertion | quscrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quscrng.u | |
|
2 | quscrng.i | |
|
3 | crngring | |
|
4 | simpr | |
|
5 | 2 | crng2idl | |
6 | 5 | adantr | |
7 | 4 6 | eleqtrd | |
8 | eqid | |
|
9 | 1 8 | qusring | |
10 | 3 7 9 | syl2an2r | |
11 | 1 | a1i | |
12 | eqidd | |
|
13 | ovexd | |
|
14 | 3 | adantr | |
15 | 11 12 13 14 | qusbas | |
16 | 15 | eleq2d | |
17 | 15 | eleq2d | |
18 | 16 17 | anbi12d | |
19 | eqid | |
|
20 | oveq2 | |
|
21 | oveq1 | |
|
22 | 20 21 | eqeq12d | |
23 | oveq1 | |
|
24 | oveq2 | |
|
25 | 23 24 | eqeq12d | |
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 | crngcom | |
29 | 28 | ad4ant134 | |
30 | 29 | eceq1d | |
31 | ringrng | |
|
32 | 3 31 | syl | |
33 | 32 | adantr | |
34 | 2 | lidlsubg | |
35 | 3 34 | sylan | |
36 | 33 7 35 | 3jca | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | 38 | anim1i | |
40 | eqid | |
|
41 | eqid | |
|
42 | 40 1 26 27 41 | qusmulrng | |
43 | 37 39 42 | syl2an2r | |
44 | 39 | ancomd | |
45 | 40 1 26 27 41 | qusmulrng | |
46 | 37 44 45 | syl2an2r | |
47 | 30 43 46 | 3eqtr4rd | |
48 | 19 25 47 | ectocld | |
49 | 48 | an32s | |
50 | 19 22 49 | ectocld | |
51 | 50 | expl | |
52 | 18 51 | sylbird | |
53 | 52 | ralrimivv | |
54 | eqid | |
|
55 | 54 41 | iscrng2 | |
56 | 10 53 55 | sylanbrc | |