Metamath Proof Explorer


Theorem quscrng

Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015) (Proof shortened by AV, 3-Apr-2025)

Ref Expression
Hypotheses quscrng.u U=R/𝑠R~QGS
quscrng.i I=LIdealR
Assertion quscrng RCRingSIUCRing

Proof

Step Hyp Ref Expression
1 quscrng.u U=R/𝑠R~QGS
2 quscrng.i I=LIdealR
3 crngring RCRingRRing
4 simpr RCRingSISI
5 2 crng2idl RCRingI=2IdealR
6 5 adantr RCRingSII=2IdealR
7 4 6 eleqtrd RCRingSIS2IdealR
8 eqid 2IdealR=2IdealR
9 1 8 qusring RRingS2IdealRURing
10 3 7 9 syl2an2r RCRingSIURing
11 1 a1i RCRingSIU=R/𝑠R~QGS
12 eqidd RCRingSIBaseR=BaseR
13 ovexd RCRingSIR~QGSV
14 3 adantr RCRingSIRRing
15 11 12 13 14 qusbas RCRingSIBaseR/R~QGS=BaseU
16 15 eleq2d RCRingSIxBaseR/R~QGSxBaseU
17 15 eleq2d RCRingSIyBaseR/R~QGSyBaseU
18 16 17 anbi12d RCRingSIxBaseR/R~QGSyBaseR/R~QGSxBaseUyBaseU
19 eqid BaseR/R~QGS=BaseR/R~QGS
20 oveq2 uR~QGS=yxUuR~QGS=xUy
21 oveq1 uR~QGS=yuR~QGSUx=yUx
22 20 21 eqeq12d uR~QGS=yxUuR~QGS=uR~QGSUxxUy=yUx
23 oveq1 vR~QGS=xvR~QGSUuR~QGS=xUuR~QGS
24 oveq2 vR~QGS=xuR~QGSUvR~QGS=uR~QGSUx
25 23 24 eqeq12d vR~QGS=xvR~QGSUuR~QGS=uR~QGSUvR~QGSxUuR~QGS=uR~QGSUx
26 eqid BaseR=BaseR
27 eqid R=R
28 26 27 crngcom RCRinguBaseRvBaseRuRv=vRu
29 28 ad4ant134 RCRingSIuBaseRvBaseRuRv=vRu
30 29 eceq1d RCRingSIuBaseRvBaseRuRvR~QGS=vRuR~QGS
31 ringrng RRingRRng
32 3 31 syl RCRingRRng
33 32 adantr RCRingSIRRng
34 2 lidlsubg RRingSISSubGrpR
35 3 34 sylan RCRingSISSubGrpR
36 33 7 35 3jca RCRingSIRRngS2IdealRSSubGrpR
37 36 adantr RCRingSIuBaseRRRngS2IdealRSSubGrpR
38 simpr RCRingSIuBaseRuBaseR
39 38 anim1i RCRingSIuBaseRvBaseRuBaseRvBaseR
40 eqid R~QGS=R~QGS
41 eqid U=U
42 40 1 26 27 41 qusmulrng RRngS2IdealRSSubGrpRuBaseRvBaseRuR~QGSUvR~QGS=uRvR~QGS
43 37 39 42 syl2an2r RCRingSIuBaseRvBaseRuR~QGSUvR~QGS=uRvR~QGS
44 39 ancomd RCRingSIuBaseRvBaseRvBaseRuBaseR
45 40 1 26 27 41 qusmulrng RRngS2IdealRSSubGrpRvBaseRuBaseRvR~QGSUuR~QGS=vRuR~QGS
46 37 44 45 syl2an2r RCRingSIuBaseRvBaseRvR~QGSUuR~QGS=vRuR~QGS
47 30 43 46 3eqtr4rd RCRingSIuBaseRvBaseRvR~QGSUuR~QGS=uR~QGSUvR~QGS
48 19 25 47 ectocld RCRingSIuBaseRxBaseR/R~QGSxUuR~QGS=uR~QGSUx
49 48 an32s RCRingSIxBaseR/R~QGSuBaseRxUuR~QGS=uR~QGSUx
50 19 22 49 ectocld RCRingSIxBaseR/R~QGSyBaseR/R~QGSxUy=yUx
51 50 expl RCRingSIxBaseR/R~QGSyBaseR/R~QGSxUy=yUx
52 18 51 sylbird RCRingSIxBaseUyBaseUxUy=yUx
53 52 ralrimivv RCRingSIxBaseUyBaseUxUy=yUx
54 eqid BaseU=BaseU
55 54 41 iscrng2 UCRingURingxBaseUyBaseUxUy=yUx
56 10 53 55 sylanbrc RCRingSIUCRing