Step |
Hyp |
Ref |
Expression |
1 |
|
quscrng.u |
|
2 |
|
quscrng.i |
|
3 |
|
crngring |
|
4 |
|
simpr |
|
5 |
2
|
crng2idl |
|
6 |
5
|
adantr |
|
7 |
4 6
|
eleqtrd |
|
8 |
|
eqid |
|
9 |
1 8
|
qusring |
|
10 |
3 7 9
|
syl2an2r |
|
11 |
1
|
a1i |
|
12 |
|
eqidd |
|
13 |
|
ovexd |
|
14 |
3
|
adantr |
|
15 |
11 12 13 14
|
qusbas |
|
16 |
15
|
eleq2d |
|
17 |
15
|
eleq2d |
|
18 |
16 17
|
anbi12d |
|
19 |
|
eqid |
|
20 |
|
oveq2 |
|
21 |
|
oveq1 |
|
22 |
20 21
|
eqeq12d |
|
23 |
|
oveq1 |
|
24 |
|
oveq2 |
|
25 |
23 24
|
eqeq12d |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
26 27
|
crngcom |
|
29 |
28
|
ad4ant134 |
|
30 |
29
|
eceq1d |
|
31 |
|
ringrng |
|
32 |
3 31
|
syl |
|
33 |
32
|
adantr |
|
34 |
2
|
lidlsubg |
|
35 |
3 34
|
sylan |
|
36 |
33 7 35
|
3jca |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
38
|
anim1i |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
40 1 26 27 41
|
qusmulrng |
|
43 |
37 39 42
|
syl2an2r |
|
44 |
39
|
ancomd |
|
45 |
40 1 26 27 41
|
qusmulrng |
|
46 |
37 44 45
|
syl2an2r |
|
47 |
30 43 46
|
3eqtr4rd |
|
48 |
19 25 47
|
ectocld |
|
49 |
48
|
an32s |
|
50 |
19 22 49
|
ectocld |
|
51 |
50
|
expl |
|
52 |
18 51
|
sylbird |
|
53 |
52
|
ralrimivv |
|
54 |
|
eqid |
|
55 |
54 41
|
iscrng2 |
|
56 |
10 53 55
|
sylanbrc |
|