Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypotheses qusgrp.h H = G / 𝑠 G ~ QG S
qusadd.v V = Base G
quseccl.b B = Base H
Assertion quseccl S NrmSGrp G X V X G ~ QG S B

Proof

Step Hyp Ref Expression
1 qusgrp.h H = G / 𝑠 G ~ QG S
2 qusadd.v V = Base G
3 quseccl.b B = Base H
4 nsgsubg S NrmSGrp G S SubGrp G
5 subgrcl S SubGrp G G Grp
6 4 5 syl S NrmSGrp G G Grp
7 eqid G ~ QG S = G ~ QG S
8 7 1 2 3 quseccl0 G Grp X V X G ~ QG S B
9 6 8 sylan S NrmSGrp G X V X G ~ QG S B