Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
quselbas
Next ⟩
quseccl0
Metamath Proof Explorer
Ascii
Unicode
Theorem
quselbas
Description:
Membership in the base set of a quotient group.
(Contributed by
AV
, 1-Mar-2025)
Ref
Expression
Hypotheses
quselbas.e
⊢
∼
˙
=
G
~
QG
S
quselbas.u
⊢
U
=
G
/
𝑠
∼
˙
quselbas.b
⊢
B
=
Base
G
Assertion
quselbas
⊢
G
∈
V
∧
X
∈
W
→
X
∈
Base
U
↔
∃
x
∈
B
X
=
x
∼
˙
Proof
Step
Hyp
Ref
Expression
1
quselbas.e
⊢
∼
˙
=
G
~
QG
S
2
quselbas.u
⊢
U
=
G
/
𝑠
∼
˙
3
quselbas.b
⊢
B
=
Base
G
4
2
a1i
⊢
G
∈
V
∧
X
∈
W
→
U
=
G
/
𝑠
∼
˙
5
3
a1i
⊢
G
∈
V
∧
X
∈
W
→
B
=
Base
G
6
1
ovexi
⊢
∼
˙
∈
V
7
6
a1i
⊢
G
∈
V
∧
X
∈
W
→
∼
˙
∈
V
8
simpl
⊢
G
∈
V
∧
X
∈
W
→
G
∈
V
9
4
5
7
8
qusbas
⊢
G
∈
V
∧
X
∈
W
→
B
/
∼
˙
=
Base
U
10
9
eqcomd
⊢
G
∈
V
∧
X
∈
W
→
Base
U
=
B
/
∼
˙
11
10
eleq2d
⊢
G
∈
V
∧
X
∈
W
→
X
∈
Base
U
↔
X
∈
B
/
∼
˙
12
elqsg
⊢
X
∈
W
→
X
∈
B
/
∼
˙
↔
∃
x
∈
B
X
=
x
∼
˙
13
12
adantl
⊢
G
∈
V
∧
X
∈
W
→
X
∈
B
/
∼
˙
↔
∃
x
∈
B
X
=
x
∼
˙
14
11
13
bitrd
⊢
G
∈
V
∧
X
∈
W
→
X
∈
Base
U
↔
∃
x
∈
B
X
=
x
∼
˙