Metamath Proof Explorer


Theorem quselbas

Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025)

Ref Expression
Hypotheses quselbas.e ˙ = G ~ QG S
quselbas.u U = G / 𝑠 ˙
quselbas.b B = Base G
Assertion quselbas G V X W X Base U x B X = x ˙

Proof

Step Hyp Ref Expression
1 quselbas.e ˙ = G ~ QG S
2 quselbas.u U = G / 𝑠 ˙
3 quselbas.b B = Base G
4 2 a1i G V X W U = G / 𝑠 ˙
5 3 a1i G V X W B = Base G
6 1 ovexi ˙ V
7 6 a1i G V X W ˙ V
8 simpl G V X W G V
9 4 5 7 8 qusbas G V X W B / ˙ = Base U
10 9 eqcomd G V X W Base U = B / ˙
11 10 eleq2d G V X W X Base U X B / ˙
12 elqsg X W X B / ˙ x B X = x ˙
13 12 adantl G V X W X B / ˙ x B X = x ˙
14 11 13 bitrd G V X W X Base U x B X = x ˙