Metamath Proof Explorer


Theorem qusgrp

Description: If Y is a normal subgroup of G , then H = G / Y is a group, called the quotient of G by Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis qusgrp.h H = G / 𝑠 G ~ QG S
Assertion qusgrp S NrmSGrp G H Grp

Proof

Step Hyp Ref Expression
1 qusgrp.h H = G / 𝑠 G ~ QG S
2 1 a1i S NrmSGrp G H = G / 𝑠 G ~ QG S
3 eqidd S NrmSGrp G Base G = Base G
4 eqidd S NrmSGrp G + G = + G
5 nsgsubg S NrmSGrp G S SubGrp G
6 eqid Base G = Base G
7 eqid G ~ QG S = G ~ QG S
8 6 7 eqger S SubGrp G G ~ QG S Er Base G
9 5 8 syl S NrmSGrp G G ~ QG S Er Base G
10 subgrcl S SubGrp G G Grp
11 5 10 syl S NrmSGrp G G Grp
12 eqid + G = + G
13 6 7 12 eqgcpbl S NrmSGrp G a G ~ QG S c b G ~ QG S d a + G b G ~ QG S c + G d
14 6 12 grpcl G Grp u Base G v Base G u + G v Base G
15 11 14 syl3an1 S NrmSGrp G u Base G v Base G u + G v Base G
16 9 adantr S NrmSGrp G u Base G v Base G w Base G G ~ QG S Er Base G
17 11 adantr S NrmSGrp G u Base G v Base G w Base G G Grp
18 simpr1 S NrmSGrp G u Base G v Base G w Base G u Base G
19 simpr2 S NrmSGrp G u Base G v Base G w Base G v Base G
20 17 18 19 14 syl3anc S NrmSGrp G u Base G v Base G w Base G u + G v Base G
21 simpr3 S NrmSGrp G u Base G v Base G w Base G w Base G
22 6 12 grpcl G Grp u + G v Base G w Base G u + G v + G w Base G
23 17 20 21 22 syl3anc S NrmSGrp G u Base G v Base G w Base G u + G v + G w Base G
24 16 23 erref S NrmSGrp G u Base G v Base G w Base G u + G v + G w G ~ QG S u + G v + G w
25 6 12 grpass G Grp u Base G v Base G w Base G u + G v + G w = u + G v + G w
26 11 25 sylan S NrmSGrp G u Base G v Base G w Base G u + G v + G w = u + G v + G w
27 24 26 breqtrd S NrmSGrp G u Base G v Base G w Base G u + G v + G w G ~ QG S u + G v + G w
28 eqid 0 G = 0 G
29 6 28 grpidcl G Grp 0 G Base G
30 11 29 syl S NrmSGrp G 0 G Base G
31 6 12 28 grplid G Grp u Base G 0 G + G u = u
32 11 31 sylan S NrmSGrp G u Base G 0 G + G u = u
33 9 adantr S NrmSGrp G u Base G G ~ QG S Er Base G
34 simpr S NrmSGrp G u Base G u Base G
35 33 34 erref S NrmSGrp G u Base G u G ~ QG S u
36 32 35 eqbrtrd S NrmSGrp G u Base G 0 G + G u G ~ QG S u
37 eqid inv g G = inv g G
38 6 37 grpinvcl G Grp u Base G inv g G u Base G
39 11 38 sylan S NrmSGrp G u Base G inv g G u Base G
40 6 12 28 37 grplinv G Grp u Base G inv g G u + G u = 0 G
41 11 40 sylan S NrmSGrp G u Base G inv g G u + G u = 0 G
42 30 adantr S NrmSGrp G u Base G 0 G Base G
43 33 42 erref S NrmSGrp G u Base G 0 G G ~ QG S 0 G
44 41 43 eqbrtrd S NrmSGrp G u Base G inv g G u + G u G ~ QG S 0 G
45 2 3 4 9 11 13 15 27 30 36 39 44 qusgrp2 S NrmSGrp G H Grp 0 G G ~ QG S = 0 H
46 45 simpld S NrmSGrp G H Grp