Metamath Proof Explorer


Theorem qusin

Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusin.u φ U = R / 𝑠 ˙
qusin.v φ V = Base R
qusin.e φ ˙ W
qusin.r φ R Z
qusin.s φ ˙ V V
Assertion qusin φ U = R / 𝑠 ˙ V × V

Proof

Step Hyp Ref Expression
1 qusin.u φ U = R / 𝑠 ˙
2 qusin.v φ V = Base R
3 qusin.e φ ˙ W
4 qusin.r φ R Z
5 qusin.s φ ˙ V V
6 ecinxp ˙ V V x V x ˙ = x ˙ V × V
7 5 6 sylan φ x V x ˙ = x ˙ V × V
8 7 mpteq2dva φ x V x ˙ = x V x ˙ V × V
9 8 oveq1d φ x V x ˙ 𝑠 R = x V x ˙ V × V 𝑠 R
10 eqid x V x ˙ = x V x ˙
11 1 2 10 3 4 qusval φ U = x V x ˙ 𝑠 R
12 eqidd φ R / 𝑠 ˙ V × V = R / 𝑠 ˙ V × V
13 eqid x V x ˙ V × V = x V x ˙ V × V
14 inex1g ˙ W ˙ V × V V
15 3 14 syl φ ˙ V × V V
16 12 2 13 15 4 qusval φ R / 𝑠 ˙ V × V = x V x ˙ V × V 𝑠 R
17 9 11 16 3eqtr4d φ U = R / 𝑠 ˙ V × V