Metamath Proof Explorer


Theorem qusinv

Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H = G / 𝑠 G ~ QG S
qusinv.v V = Base G
qusinv.i I = inv g G
qusinv.n N = inv g H
Assertion qusinv S NrmSGrp G X V N X G ~ QG S = I X G ~ QG S

Proof

Step Hyp Ref Expression
1 qusgrp.h H = G / 𝑠 G ~ QG S
2 qusinv.v V = Base G
3 qusinv.i I = inv g G
4 qusinv.n N = inv g H
5 nsgsubg S NrmSGrp G S SubGrp G
6 subgrcl S SubGrp G G Grp
7 5 6 syl S NrmSGrp G G Grp
8 2 3 grpinvcl G Grp X V I X V
9 7 8 sylan S NrmSGrp G X V I X V
10 eqid + G = + G
11 eqid + H = + H
12 1 2 10 11 qusadd S NrmSGrp G X V I X V X G ~ QG S + H I X G ~ QG S = X + G I X G ~ QG S
13 9 12 mpd3an3 S NrmSGrp G X V X G ~ QG S + H I X G ~ QG S = X + G I X G ~ QG S
14 eqid 0 G = 0 G
15 2 10 14 3 grprinv G Grp X V X + G I X = 0 G
16 7 15 sylan S NrmSGrp G X V X + G I X = 0 G
17 16 eceq1d S NrmSGrp G X V X + G I X G ~ QG S = 0 G G ~ QG S
18 1 14 qus0 S NrmSGrp G 0 G G ~ QG S = 0 H
19 18 adantr S NrmSGrp G X V 0 G G ~ QG S = 0 H
20 13 17 19 3eqtrd S NrmSGrp G X V X G ~ QG S + H I X G ~ QG S = 0 H
21 1 qusgrp S NrmSGrp G H Grp
22 21 adantr S NrmSGrp G X V H Grp
23 eqid Base H = Base H
24 1 2 23 quseccl S NrmSGrp G X V X G ~ QG S Base H
25 1 2 23 quseccl S NrmSGrp G I X V I X G ~ QG S Base H
26 9 25 syldan S NrmSGrp G X V I X G ~ QG S Base H
27 eqid 0 H = 0 H
28 23 11 27 4 grpinvid1 H Grp X G ~ QG S Base H I X G ~ QG S Base H N X G ~ QG S = I X G ~ QG S X G ~ QG S + H I X G ~ QG S = 0 H
29 22 24 26 28 syl3anc S NrmSGrp G X V N X G ~ QG S = I X G ~ QG S X G ~ QG S + H I X G ~ QG S = 0 H
30 20 29 mpbird S NrmSGrp G X V N X G ~ QG S = I X G ~ QG S