Metamath Proof Explorer


Theorem quslvec

Description: If S is a vector subspace in W , then Q = W / S is a vector space, called the quotient space of W by S . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses quslvec.n Q = W / 𝑠 W ~ QG S
quslvec.1 φ W LVec
quslvec.2 φ S LSubSp W
Assertion quslvec φ Q LVec

Proof

Step Hyp Ref Expression
1 quslvec.n Q = W / 𝑠 W ~ QG S
2 quslvec.1 φ W LVec
3 quslvec.2 φ S LSubSp W
4 eqid Base W = Base W
5 2 lveclmodd φ W LMod
6 1 4 5 3 quslmod φ Q LMod
7 1 a1i φ Q = W / 𝑠 W ~ QG S
8 4 a1i φ Base W = Base W
9 ovexd φ W ~ QG S V
10 eqid Scalar W = Scalar W
11 7 8 9 2 10 quss φ Scalar W = Scalar Q
12 10 lvecdrng W LVec Scalar W DivRing
13 2 12 syl φ Scalar W DivRing
14 11 13 eqeltrrd φ Scalar Q DivRing
15 eqid Scalar Q = Scalar Q
16 15 islvec Q LVec Q LMod Scalar Q DivRing
17 6 14 16 sylanbrc φ Q LVec