Metamath Proof Explorer


Theorem qusmul

Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024)

Ref Expression
Hypotheses qusmul.h Q = R / 𝑠 R ~ QG I
qusmul.v B = Base R
qusmul.p · ˙ = R
qusmul.a × ˙ = Q
qusmul.r φ R CRing
qusmul.i φ I LIdeal R
qusmul.x φ X B
qusmul.y φ Y B
Assertion qusmul φ X R ~ QG I × ˙ Y R ~ QG I = X · ˙ Y R ~ QG I

Proof

Step Hyp Ref Expression
1 qusmul.h Q = R / 𝑠 R ~ QG I
2 qusmul.v B = Base R
3 qusmul.p · ˙ = R
4 qusmul.a × ˙ = Q
5 qusmul.r φ R CRing
6 qusmul.i φ I LIdeal R
7 qusmul.x φ X B
8 qusmul.y φ Y B
9 1 a1i φ Q = R / 𝑠 R ~ QG I
10 2 a1i φ B = Base R
11 5 crngringd φ R Ring
12 eqid LIdeal R = LIdeal R
13 12 lidlsubg R Ring I LIdeal R I SubGrp R
14 11 6 13 syl2anc φ I SubGrp R
15 eqid R ~ QG I = R ~ QG I
16 2 15 eqger I SubGrp R R ~ QG I Er B
17 14 16 syl φ R ~ QG I Er B
18 12 crng2idl R CRing LIdeal R = 2Ideal R
19 5 18 syl φ LIdeal R = 2Ideal R
20 6 19 eleqtrd φ I 2Ideal R
21 eqid 2Ideal R = 2Ideal R
22 2 15 21 3 2idlcpbl R Ring I 2Ideal R x R ~ QG I y z R ~ QG I t x · ˙ z R ~ QG I y · ˙ t
23 11 20 22 syl2anc φ x R ~ QG I y z R ~ QG I t x · ˙ z R ~ QG I y · ˙ t
24 2 3 ringcl R Ring p B q B p · ˙ q B
25 24 3expb R Ring p B q B p · ˙ q B
26 11 25 sylan φ p B q B p · ˙ q B
27 26 caovclg φ y B t B y · ˙ t B
28 9 10 17 5 23 27 3 4 qusmulval φ X B Y B X R ~ QG I × ˙ Y R ~ QG I = X · ˙ Y R ~ QG I
29 7 8 28 mpd3an23 φ X R ~ QG I × ˙ Y R ~ QG I = X · ˙ Y R ~ QG I